
ATA09" 511 BATTELLE COLWUS LABS O*4 F/a 7/4

COUATIONAL STWY OF NOI4AIABATIC EFFECTS IN ATO-NOLECULE RE--ETC(U)

NC J0M. RED04ON F49620-79-C-0050
UNLSSIFIED AFOSRTR81-0007 Is.

-mm--2



AFOSR-TR. 8 1 - OVO ,

I 1w

I -o ,

I Columbus Laboratories

I LEVEL"
Report

I .
I

40 ".'.%4

I

I .

Approved f or pulli reles

dist r but ionl ul imitecd.

8.cf -)A



Final Technical Report

on

COMPUTATIONAL STUDY OF NONADIABATIC EFFECTS
IN ATOM-MOLECULE REACTIVE SCATTERING

to

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

December 10, 1980 >K

Prepared by

Michael J. Redmon

BATTELLE
Columbus Laboratories

505 King Avenue
Columbus, Ohio 43201

AIR FOICE Oi"'7V2 F SCENTIFIC RESEARCH (AFSC)
NOTICE OF TI,'.i , "AL TO DDC
This chli :jpc t ha! heen reviewed and is
approved for pmll c reloise IAW AFH 190-12 (7b).
Di3tributiol is unlimited.
A. D. BLOSA

-,ichieal Information Officer



I
I

TABLE OF CONTENTS

f Page

I. STATEMENT OF WORK ....... .. ........................ 1

II. DESCRIPTION OF PROBLEM ........ ..................... 1

III. RESEARCH OBJECTIVES ...... ... ...................... 5

IV. RESEARCH ACCOMPLISHMENTS ........ .................... 5

V. RECOMMENDATIONS FOR FURTHER WORK ...... ................ 9

VI. SCIENTIFIC PERSONNEL SUPPORTED DURING THIS PROJECT ........ .. 10

VII. PUBLICATIONS AND PRESENTATIONS RESULTING FROM THIS REPORT. . 11

REFERENCES ....... ... .............................. . 13

APPENDIX A

RECENT RESULTS FROM THREE DIMENSIONAL QUANTUM REACTIVE SCATTERING THEORY

APPENDIX B

AN ANALYTICAL FIT TO AN ACCURATE AB INITIO (A 1 ) POTENTIAL SURFACE OF H20.

APPENDIX C

AB INITIO TREATMENT OF ELECTRONICALLY INELASTIC K + H COLLISIONS USING
A-bDIR-ECT-INTEGRATION METHOD FOR THE SOLUTION OF THE COUPLED-CHANNEL
SCATTERING EQUATIONS IN ELECTRONICALLY ADIABATIC REPRESENTATIONS

Accession 

ror

ID c  
.

T

Dist ' 1

*~~~' '
I



I
I

FINAL TECHNICAL REPORT

on

Contract # F49620-79-C-0050

COMPUTATIONAL STUDY OF NONADIABATIC EFFECTS
IN ATOM-MOLECULE REACTIVE SCATTERING

to

Air Force Office of Scientific Research

December 10, 1980

I. STATEMENT OF WORK

Conduct a theoretical research program to develop quantum

mechanical methods of studying nonadiabatic effects in three-dimensional

atom-diatom collisions.

II. DESCRIPTION OF PROBLEM

Chemical dynamics has reached the stage of development that
allows the first-principles determination of detailed state-to-state

information for many kinetic processes.(1) These new experimental and

theoretical methods are beginning to provide information of significant

importance to military technology in such areas as chemical and excimer

laser development, studies of the interaction of modern weapons systems

with the atmosphere, the characterization of the radiation from rocket

and ropllat rseach.(2,3)
plumes, and combustion and propellant All of these areas

require rate data for specific quantum transitions as input to sophisticated

kinetic codes.
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In many instances, the transitions of interest are difficult

to investigate experimentally due to short lifetimes, low intensities,

competing prncesses, or simply economic factors. Theoretical approaches

can not only provide information of extreme utility to the experimentalist

as support for the interpretation of data, but in their own right can be the
(4)

most cost-effective means of obtaining such information.

The goal of this research program is to develop new and more

efficient quantum scattering methods that will be useful in applications

to state-to-state collision processes involving two- and three-atom systems.

The emphasis is on nonadiabatic processes, particularly those that involve

the transfer of electronic energy. This approach is based on the coupled-

channel method, and stresses reliable approximations that allow the study of

light, first-row molecular systems involving up to three atoms. An important

constituent of the present approach is the incorporation of

potential energy surfaces and couplings obtained from ab-initio quantum

chemistry. The suitable analytical representation of such surfaces is

an important component of this research.

The Born-Oppenheimer (BO) separation of electronic and nuclear

motion is a valuable tool in molecular theory since many low-energy

collision processes are often adequately described by considering motion

on a single potential energy surface. For inelastic collisions where

avoided crossings or small separations between electronic states occur,

and for reactions which involve the breaking of chemical bonds and

reorganization of spin couplings, the BO approximation can be a poor

one. In such cases it is necessary to consider the mixing of two or more

adiabatic electronic states that arise due to nuclear motion.
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Quantum chemistry is concerned with solution of the Schrodinger

equation for electronic motion that results from application of the Born-

Oppenheimer approximation. The set of solutions (adiabatic) to the

electronic problem can be used as a basis for expanding the total wavefunctions

for nuclear motion. When the BO approximation is valid, the wavefunctions

for nuclear motion adequately describe molecular collisions on the appropriate

potential surface (neglecting spin effects).

These adiabatic electronic functions can often be strongly coupled

by operators neglected in the BO separation. (5) For body-fixed coordinates

(BF), in which the electronic problem is conveniently solved, these operators

take the form of BO couplings for internal motion and coriolis couplings

resulting from tumbling of the BF axis. Spin-orbit interaction is normally

neglected in solving for the electronic eigenfunctions, but it must be

included with the nonadiabatic couplings for a proper treatment of the collision

problem. Other terms in the Breit-Pauli hamiltonian resulting from removing

the center-of-mass motion may be neglected in problems of chemical interest.

Since most quantum coupled-channel methods make use of partial-

wave expansions, studies of interacting open-shell species must explicitly

consider the various angular momentum couplings that occur. Several quantum

treatments of multiple-surface effects in F + H2 have done so. Miller and

Wyatt (6 ) and DeVries and George(7 utilize the valence bond character of

DIM theory in their formulations, while Rebentrost and Lester (8) employ

SCF wavefunctions. Depending on the spin and angular momentum of the

collision partners, different coupling schemes are required. These studies

are the only ones reported for the interaction of a structured atom with a

molecule in a IE state. Extensions to open-shell molecules are necessary to

reach the ultimate goal of this project.

L
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All three studies mentioned above employ diabatic representations

for solving the coupled equations. (5) These are usually obtained by various

prescriptions from the adiabatic representation, and are not unique. They

can be obtained by a unitary transformation that globally eliminates certain

couplings. The advantage of diabatic representations is that one can

minimize or eliminate the large couplings due to nuclear motion and instead

employ a nondiagonal representation of the electronic hamiltonian. By

eliminating the first derivative term, the coupled equations can be

integrated using very efficient algorithms. Similar couplings appear for

vibrational and rotational motions in reaction coordinate formulations of

reactive scattering. Although the equations can be integrated with such

terms included, better stability is obtained if they are eliminated.
(9)

Since ab initio adiabatic potential surfaces and their couplings are

employed in this approach, it is important that adequate methods be

developed for integrating the appropriate coupled equations.

In summary, this research program attempts to bring together the

computational tools necessary to determine from first-principles, state-to-

state probabilities for quantum tra;isitions involving rotational, vibrational,

and electronic degrees of freedom for atom-diatomic molecule collisions.

In Part III we highlight the principal objectives of this program, and in

Part IV we examine the goals achieved during the past 18 months. Part V

provides recommendations for further work.
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III. RESEARCH OBJECTIVES

The overall objectives of this research program are as follows:

0 Extend the 3-D reaction coordinate theory of chemical
reactions to include nonadiabatic electronic transitions.

* Investigate various decoupling approximations for
reducing the complexity of the coupled equations.

* Develop systematic approaches for the analytical
representation of ab initio potential-energy surfaces
and couplings.

* Develop efficient algorithms for the integration of
coupled equations involving nonadiabatic couplings
between rotational, vibrational, and electronic states.

e Implement these methods into efficient scattering codes.

a Apply these codes to a variety of problems of current
interest.

IV. RESEARCH ACCOMPLISHMENTS

This research contract was originally funded as a 36-month effort,

but this was reduced to 18 months because the principal investigator left

Battelle. In spite of the short duration of this project, there have been

a number of accomplishments that will form the basis of a practical method

for studying electronic excitation in molecular collisions.

As a result of early work on this project, rate constants from

3-D reactive scattering calculations for F + H2 and H + H2(V=l) are shown

to be in general agreement with experiment (see Appendix A). Recent

experiments on F + H2 suggest the existence of a resonance
(10) predicted

earlier by our theoretical approach.(ll) Surface fitting procedures have

been developed for fitting ab initio potential energy surfaces (see
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Appendix B). A variety of techniques for integrating coupled equations

were investigated, in part in collaboration with the NRCC workshop on

computational algorithms in scattering theory. These methods were applied

to a variety of vibrationally and rotationally nonadiabatic processes

(Appendix A) and to electronically nonadiabatic processes in K + H

collisions (Appendix C).

Specific accomplishments are as follows:

0 Previously computed reaction probabilities for F + H2

were used to determine cross sections and rate constants

for this reaction. This is the first 3-D quantum

mechanical calculation of the rate of a chemical reaction

other than H + H2 . Arrhenius parameters from the

theoretical calculations are in reasonable agreement with

experiment. Perhaps the most important result is that

it is possible to compute probabilities at enough values

of eaergy and total angular momentum to obtain total

state-to-state cross sections over the range of energies

required to compute a thermal rate. This is further

discussed in Appendix A.

* Quantal rate constants calculated at 300 K for H + H2(V=l)

agree with some experimental results and are in apparent

disagreement with classical mechanics. The potential

surface used in this study is not very reliable, but gives

rates for V=O in good agreement with experiment and other

theoretical values (see Appendix A). This work is discussed

OIL
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in some detail in a recent review by Schatz. (1 2 ) Again,

it is significant that these calculations are possible

with modest computing resources. The H + H2 (V=l)

calculations were done on a VAX minicomputer!

a Methods have been developed, based on the many-body

approach of Murrell, to obtain analytical representa-

tions of three- and four-atom potential energy surfaces.

To date applications have been made to O(ID) 
+ HIZ +

C(3 P) + 02(3), O(3P) + H20 and O(3 P) + CO2. Quartic

force fields for H20 and CO2 are accurately reproduced

with this technique (see Appendix B).

* Codes for generating 3-D electronic correlation diagrams

in reaction coordinates, including rotational-vibrational

degrees of freedom, have now been developed. These are

general codes capable of treating one potential surface

at a time and are not restricted to linear reaction

intermediates. An analytical representation of the

potential surfaces for each electronic state is required

input. Systems studied so far are F + H2, H + H2,

0(3p) + H2, and O( D) + H2.

* 3-D translational wavefunctions have been obtained for

F + H2, along with density and flux maps. The 3-D flux

maps show whirlpool structure similar to the F + H2

collinear reaction previously studied. This will be
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presented in a forthcoming paper. (13) This is an unusual

method of interpreting scattering calculations and should

lead to an increased understanding of molecular reaction

mechanisms.
(14)

e An integral equation method developed previously

has been tested against some of the more modern

algorithms( 15 '16), and in many instances is seen to

be competitive. This algorithm is expected to be

particularly useful in applications to energy-dependent

potentials such as occur in reactive scattering problems.

* Several scattering codes incorporating electronic coupling,

using different integrators, have been written and tested.

Two of the integrators use accurate and reliable finite-

difference methods. The others use more efficient

potential-following techniques. The finite difference

codes can be used to test the accuracy of the potential-

following ccdes during preliminary studies on new systems.

* Adiabatic potential energy curves and nonadiabatic first-

derivative couplings for the X, A, and Clz + states of KH

have been obtained by an ab initio pseudopotential method.
(17 )

The important splitting between the X and A curves is in

good agreement with experiment. These curves and couplings

are useful for dynamical studies on this system (see

Appendix C).
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The ab initio potentials were used to calculate

electronically inelastic transition probabilities

and cross sections for low-energy K + H collisions.

The 42P - 42S quenching cross section varies between

2 x 1O- 4 a2 and 10 x lO- 4 a2 between .022 eV and

1.10 eV relative translational energy. This study

is a prelude to the study of K + H2*

The ultimate goal of this program, namely, the treatment

of electronic transitions in a 3-D atom-diatomic molecule reaction,

was not realized due to time constraints. The manner in which the

present study can be extended to this process is discussed in the

next section.

V. RECOMMENDATIONS FOR FURTHER WORK

Progress to date has been made in (1) developing efficient

computational tools for integrating coupled equations, (2) studying

3-D chemical reactions on single, adiabatic potential energy surfaces,

and (3) developing a formalism for including electronic transitions in

atomic collisions. The following recommendations should receive serious

consideration to fully utilize the effort expended on this project.

0 Perform reactive scattering calculations for O( 3P) + H2.

Ab initio potential surfaces exist for this system, as

do classical trajectory results and experimental results.

This will provide yet another reaction for which 3-D quantum

results are available. This was scheduled for the current

project, and all necessary codes are in hand.
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a Incorporate electronic degrees of freedom into existing

scattering codes. This was started during this project,

and the 3-D reactive code has been partly generalized.

This is a straightforward extension of methods currently

in hand, at least for singlet diatomic fragments.

e Develop strategies for treating arbitrary electronic

angular momen'im in a total angular momentum representation.

* Investigate necessary decoupling approximations suitable

for studying vibronic transitions.

* Perform electronically nonadiabatic nonreactive calculations

on Na + H2 or K + H2. This will test the machinery necessary

for the reactive problem.

* Perform electronically nonadiabatic reactive calculations

on Na + H2 or K + H2. These reactions are endothermic by

about 2.3 eV and 2.7 eV, respectively, and will require a

large number of channels. Reliable approximations make

these problems tractable on existing machines.

VI. SCIENTIFIC PERSONNEL SUPPORTED DURING THIS PROJECT

Dr. Bruce C. Garrett

Dr. Michael J. Redmon

Dr. Isaiah Shavitt
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Recent Results from Three-Dimensional
Quantum Reactive Scattering Theory

MICHAEL J. REDMON
Chemical Physics Group, Battelle-Columbus Laboratories. Columbus. Ohio 43201.

U.S.A.

Abstract

Results from recent three-dimensional natural coordinate reactive scattering calculations are
presented. Extensions of the scattering method of Wyatt to systems with nonlinear intermediates
are discussed. Rate constants for the reaction H + H: (c = II at 300 K are presented and compared
wi ith classical trajectory calculations and with experiment. The quantum results are in reasonable
agreement with experiment, but the classical results greatl. underestimate the reaction rate Total
cross sections and relative rate constants are presented for the F + H, (v = 0) reaction and compared
with classical results and experiment. Total cross sections for the H + 0z reaction are presented
that demonstrate the enhancement of reaction caused by reagent vibrational energ

1. Introduction

There has been considerable progress in the development of quantum me-
chanical methods for obtaining state-to-state cross sections and rate constants
for simple chemical reactions. Beginning with the early work on the H + H-
reaction [1-4), the computational technology has continuously developed so
that converged close-coupled results now exist for this system [5-7]. Recentl, -

a calculation has been reported [7] on an accurate fit [8] to the definitive Liu-
Siegbahn surface [9]. It should now be possible to obtain accurate ab initio
dynamical information for H + H, and its isotopes for comparison with exper-
iment.

Progress has also been made in developing methods based on close-coupling
techniques for treating 3-D (three-dimensional) systems other than H + H-
[10-12]. Extensions to reactions involving heavier atoms are difficult due to
asymmetries in the reaction coordinates and to the enormous increase in the
number of coupled channels necessary for convergence of the computed
probabilities. The large number of channels accessible at thermal collision
energies requires the use of centrifugal decoupling approximations for total
angular momentum J > 0. These can be so-called J--conserving approximations
[13], in which the number of channels used in expanding the wavefunction is
approximately the same as for J - 0, or centrifugal sudden approximations [14].
in which the orientation of the system is frozen during a collision. resulting in
an enormous reduction in the number of coupled equations. Both of these ap-
proximations are adequate for total reaction cross sections for H + H. and the
J.-conserving approximation reproduces accurate close-coupling results for

International Journal of Quantum Chemistr, Quantum Chemistry Smposum 13.555 St, ts l",l
S19Q b) John %,ilo & Sons. Inc Otl3642 75 O Q501 )o
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individual rotational transitions to 71 [101. It has so far not been possible to test
these approximations for heavier systems by comparison with close-coupling
calculations. It is felt that the J--conserving approximation should be reliable
for other reactions with linear intermediates.

In this article we present a review of some recent results of 3-D reactive
scattering calculations for F + H,, H + H2,. and H + 02 These calculations used
Wyatt's formulation of the 3-D quantum scattering problem [15] with the
natural collision coordinates (,cc) of Marcus [I ]. The calculations employed
the code REACTOR, written by the author while at the Universit% of Texas
at Austin. and which was used in the previous calculations reported for F + H-
[10- 12]. The latest version incorporates modifications necessar% for treating
reactions with a nonlinear intermediate, such as H + 0,, and also uses the R-
matrix propagation method [171. These extensions are examined, although
computational details are not presented here. The approximattons employed
are discussed insofar as they might be expected to affect the reported results.
A recent review has been given by Wyatt [18].

In Sec. 2 we discuss some improvements in the NcC approach. In Sec 3 %e
present results for several systems, including rate constants for the F + H2 re-
action. and make comparisons with experiment and classical trajector. calcu-
lations. We also compare our calculations of reaction rates for vibrationall. hot
H + H, with some new experiments and with classical mechlanics. Finall., we
discuss new applications of the method to the H + 0 reaction.

2. Recent Developments in NCC Reactive Scattering Methodology

A. More Schi:ophrenia in Reaction Coordinates

The unique feature of Marcus' natural collision coordinates [1 6] is that the
translation, vibration, and rotation coordinates (s. p. -Y) all vary smoothl. from
a set appropriate for describing the relative motion of an atom C colliding % ith
a diatomic molecule AB to a set appropriate for describing the relative motion
of atoms A or B with the molecules BC or AC. This is accomplished in the fol-
lowing way. The body-fixed (x. X) = (0.0) plane is chosen as the instantaneous
plane of the three atoms, with collinear motion defined in the (:. Z) plane. De-
viations from collinear motion require excursions of the system into the (v. Y)
plane. and are defined by the quantity m -> 0 with magnitude (.1-: + }"2)l -. As
discussed by Marcus [16]. keeping m positive avoids one source of double
counting of configurations. The smooth transformation between reactant and
product coordinates is obtained by requiring a local Cartesian constraint

Y sina(s) + Y cos(s) 0 l

at each point along the reference curve defined by the translational coordinate
s. a(s) is an arbitrary switching angle [ 1b] that varies smoothly between zero
for reactant configurations and . (skew angle of the mass-%%eighted coordinates I
for product configurations. The : axis points initially to the reagent atom. and
switches smoothly so that it points to the product atom after the collision.
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Rather than use the coordinate m. it is more convenient to discuss the motion
by using the local radial and bending coordinates (r, -y. to which m is related
by the expression

m = r sin-y (2)

where r is measured (in a constant s plane) from the : axis and ) is referenced
to the collinear plane. This is useful in writing the Hamiltonian for the system
since y becomes a convenient coordinate for representing internal rotational
motion. A problem that arises, which was not discussed by Marcus. is that there
are values of -y (near 7r/12) for which the coordinates become multiply valued
whenever the switching angle a(s) is not exactl, equal to one of its asymptotic
values. This is a direct consequence of the constraint expressed by Eq. I ). This
situation is illustrated in Figure 1. where the hatched area for ' > n,,, represents
the region in which configurations are identical to some for "/ < 'i,,,. Configu-
rations for I = y,, correspond to isosceles triangle geometries, and when s =
0 and a = I12 , . y, = 45', which corresponds to equilateral triangle configu-
rations for H3 and H3I.

This characteristic of NCC was not noted in early applications [6. 10. 11
because the bending potential was parametrized and fit to small deviations from
linearitN (small y). It was observed by this author during attempts to accuratel%
represent the F + H, surface in NCc. It becomes particular)% important for
systems with stable nonlinear intermediates such as Hi + and HO 2. In fact. for
H+ + H2. the most stable configuration follows the curve Y= - y,, in Figure 2.
corresponding to C2, configurations. It seems necessary to replace Eq. (2)
with

m = r sin 6"v. (3)

with the scale factor 6(s) defined so that 6-y= -,, for -y- 7,r/2. This introduces

m

CONSTA'JT S

OL AN E

r

Figure 1. A constant s plane showing the multivalued region for 1 > y,, that must be a%oided
in doing scattering calculations. When the switching angle equals an asymptotic value. "

1 /2 Xi
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Figure 2 A comparison of the variation of the switching angle als) with reaction cordinate.
and the corresponding value of y,, which defines isosceles triangle geometries for the
three-atom system

additional complications into an already formidable kinetic energy operator [15].
but some procedure for maintaining - < I, is necessary for accurate compu-
tations in ,cc, It should be pointed out that this schizoid region is different from
the one associated with three-atom dissociation regions of Ncc [ 191. which are
effectively handled for lo%-energy collisions b. using a circular arc to define
the reference curve, and choosing an appropriate turning center.

B. Extensions to Systerns with Noncollinear Reaction Paths

Ncc theory was originally formulated with applications to H + H, in mind.
Since for this reaction the minimum energy path is collinear, terms in the kinetic
energy that are small except for large deviations from collinearity were dropped.
and others were approximated by evaluating them on the reaction path 16. 15]
This near-linear intermediate approximation has been used in all ,cc calcu-
lations reported so far. We have recently added the additional terms that con-
tribute for J = 0 and now neglect only those that are zero within the J:-con-
serving approximation. Elkowitz has suggested that the inertia coefficients can
be evaluated on the noncollinear reaction path, in the spirit of the linear inter-
mediate approximation 120]. He has shown that the Hamiltonian then reduces
exactly to the one used previouslN [15] when the reaction path is collinear. We
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have chosen instead to accurately compute the matrix elements over the vibra-
tional motion, which can be large. but to set I equal to >o. its local value on the
reaction path, to approximate some of the integrals over the bending coordinate.
This leads to a considerable simplification in matrix element computation. and
seems reasonable since we are looking toward developing useful decoupling
procedures, and not exact close coupling. The new methods of evaluating matri\
elements were used for the H + O- calculations discussed in this article.

3. Selected Results for Three Representative Reactions

In this section we present some recent results for the H + H:. F + H,. and
H + 02 reactions. These systems are useful for demonstrating the range of ap-
plicability of the method, as F + H: is highly exoergic. while H + 0 is endoergic
and has a stable nonlinear intermediate with a 2-eV well. The goal of our current
effort is to develop techniques for determining total state-to-state cross sections
and rate constants for atom-diatomic molecule reactions involving relativel.
light atoms.

A. Rate Constants for the H + H2 Reaction

In their work on this reaction. Schatz and Kupperman [5] computed rate
constants for the Porter-Karplus surface and found good agreement %kith
classical mechanics at 600 K. However, at 300 K there were si2nificant differ-
ences between the quantum and classical results. It is of interest to compare
quantum and classical calculations on a surface with the correct barrier height.
and for vibrationall[ excited reagents, since reactions of vibrationallb hot hx-
drogen are of current astrophysical interest. We have chosen the Yates-Lester
surface [211, and computed distinguishable atom rate constants for the processes
H + H 2 (t 0. = 0) H + H, (r = 0, j'), and H + H: -t = l.j = 0) - H
+ H2 (v = 0, Tj'). The results are summarized in Table 1. We find. as did Schatz.
that the classical rates at 300 K are significantly lower than the quantum results.
For the ground-state reaction, this is presumably due to tunneling. For vibra-
tionally excited hydrogen, tunneling is probably less important, and the enhanced
rate is the result of interference effects among the various reactive and non-
reactive pathways that suddenly become assessable near a threshold.

We find that the cooling rate for H2 (c = 1) is slightl. larger for the non-
reactive pathway than for the reactive pathway, as predicted from J = 0
probabilities [18]. This is in contradiction to the assumptions made bN Heidner
and Kasper in analyzing their experiments [22]. where the nonreaciive contri-
bution to the cooling was assumed negligible.

In comparison with recent hydrogen maser experiments [231. "e find that
our overall rates are generally in much better agreement with experiment than
classical results on the Yates-Lester surface (at 300 K). although we are perhaps
underestimating the contribution due to the resonant exchange process H + H,

Ic - I) H + H, (c = 1). W e are currentl. examining the possibilit. that the



56.0 REDMON

TABLE I Rate constant,' for the H + H. reaction at 300 K

classical
a  

quantumn expertmeit

k -- 1.3 X 108 C.2 X 10

d3.2 X 10

k 5.1 X 0 (3 1012' d 3. X 10
!
2

kN (2.4 X h 
0  

8.2 2 I --

1 . 1013 1

k0 (I X 10!
3 )  

el.8 X i l

100
k10 3.6 X t0o 2.6 X 10 12

L its are cm3 
sec-I moie- Values in parenthesis are estimates.

k1 , refers to reaction from H, it = 0. Of to all inal states. k,, refers to reaction from H,

u = 0tto H • 
= 0. 1j).

Classical results on the Yates-Lester surface from I Nk M Smith. Chem Ph>s. Lett. 47. 
2!Q

I 3-D quantum results for the Yates-Lester surface, this work
S\ Schultz and D. J LeRo\, J. Chem. Phys 42, 3869 1965)

d Reference 23.

I Reference 22.

linear intermediate approximation might lead to underestimation of the
probabilities for this process.* It should be noted that these rates are computed
from distinguishable atom cross sections for comparison with classical me-
chanics, and are for reagent H2 in its lowest rotational state. Our conclusion is
that the use of classical mechanics for this system is justified only for transla-
tional temperatures well above 300 K.

B. Quantum Effects in the Three-Dimensional F + H, Rea, tin

This reaction was the first one studied beyond H + H, by a full 3-D quantum
mechanical method [10. 11]. One of the important reasons for studying thts
system was to see to what extent the very significant differences bet\een
quantum and classical collinear calculations [24] might be modified in three
dimensions. The original 3-D quantum calculation was restricted to total angular
momentum J = 0. but it showed that the Feshbach resonance mechanism that
dominates the low-energy collinear reaction probability [251 for the proce.s. F
+ H, (v = 0) - H + HF (c' = 2) persists in three dimensions. It as later
demonstrated by summing over J to obtain a total cross section for this process
that the quantum cross section had a distinct maximum Just above threshold.
while the classical result continued to grow [ 12].

Our current quantum scattering codes are efficient enough to allo\ compu-
tations in which the potential parameters of the surface are varied. This allows
us to examine the sensitivity of the dynamics to various features of a potential

The author wishes to thank J \, Bowman for useful discussions of this point
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surface. This approach can be used to aid those doing ab initio calculations of
potential energv surfaces in selecting those regions of a surface that require
significant effort. This has been done successfully for the collinear F + H, re-
action [25, 26]. We are presently performing 3-D calculations for F + H, % ith
a variety of bending potentials and present in Figure 3 cross sections for a fit to
the famous surface 5 of Muckerman (271. This differs from the potential used
previously (10, II in that this fit gives a better description of the local rotor
eigenvalue spectrum. The previous potential allowed for less hindered rotational
motion near the saddle point than the one used here. and produced reaction cross
sections about 30% larger near the threshold. Results for all of the potentials
we have used are similar, and all show a maximum in the v = 0 -- 2 cross section.
As Figure 3 shows, this produces a leveling off in the total reaction cross section
that is not observed in the classical result [121 This is direct evidence that a
quantum mechanical resonance mechanism results in an energ. dependence
in the reaction cross section that is not reproduced b% classical mechanics. which
should be experimentally verifiable.

We have calculated state-to-state rate constants, and present them in Table
II. along with classical and experimental results where possible. WNe find that
67% of the available ener-P ends up as product vibration, in excellent agreement
with experiment and classical mechanics. The ratio of rate constants k I k- is
also in good agreement, but the ratio k -,k- is not. We find a significant amount
of flux ends up in r' = 0 excitation and is significantly affected b% variations in
the bending potential, as is to a lesser extent C" = 3. Classical mechanics produces
no reaction into c' = 0. and collinear quantum calculations show less reaction
into this state than 3-D calculations, Modifications to the bending potential can
introduce wells in the t = 0 and t = I correlation diagrams and affect the amount
of reaction into those states. just as modifications in the vibrational leve,,
themselves can drasticall, affect collinear probabilities [251 This sensitivit\
to features of the bending potential should ultimatel% lead to refinements in our
knowledge about this system.

Crossa ts

Figure 3 Cross sections for the reaction F + H, .i = 0, 1 = 01 - H + HF ii I; ' The mal
reaction cross section is show n and compared with Ihe classical result of ref 2's
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TABLE II Comparison of theoretical and experimental results for the 3-D F + H, reaction

classical quantur' experiment

Ea/kcal iot-3 1. 937' !. 5z .6

log A/cm
3  

s " o 
"  

1 3 .2a 13,E- 14 .2
c

J., .66s, E

kv,/kma x 
(NO

'
C

a ' b

v. * 0 Z . --

V' 1 .22 .24 .V,

v' 2 1._0 0.22

a 3 .26 23

v / max  Erel 2 e, 
'

a' .23 26 --

v ' 2 1,0O V ' --

' 3 .54

I Classical results of J C. Poiani and J L Schreiber. Farada% Discuss. Chem. Soc. 62. 26"
( 1977) T and ! selected from a 300-K Boltmann distribution

IThts work. Quantum calculations for H, 0 = G.j = 0. HF i1i, :/fji thus log .4 should be
underestimated.

I K. H. Homann et at Ber Bunsenges Phs Chem "4. 5,5 ( l-0i.
d J C. Polan.i and K B Woodall, J Chem. Ph s 5 , 

11-4 1 IQ-l2

I Classical cross sections of ref 'S
f Quantum cross sections. this work and ret 12.

C. A Quantum Mechanical StudY of the H + 0, Reaction
We have applied the nonlinear intermediate version of RE.ACTOR to the H

+ 02 reaction, using a LEPS surface of Gauss wtth an angle-dcpendent Sato
parameter [291. This reaction is of practical interest because it is an important
chain propagation step in many combustion systems and difficult to stud% ex-
perimentally. Thus, a detailed theoretical investigation of the kinetics of this
system is warranted.

From a theoretical viewpoint, this reaction presents manN new features. It
is endothermic by about , eV and has a metastable intermediate with a 2-eV
well. The integration of classical trajectories for this system is complicated bN
the occurrence of many long-lived complexes which often lead to trajectories
that cannot be back-integrated [291. The quantum calculations are made dif-
ficult by the existence of so many open channels.

In Table Ill we present total cross sections for formation of OH i t = 0) from
various vibrational states of 0,. The calculations are not fully converged due
to core limitations on the CDC 7600 (we were limited to about 70 channels1.
We are presently using a VAX 11 /780 where core size is not a limitation and
hope to converge the J:-conserving calculations for this system.

The dependence of reaction cross section on reagent vibrational energy, follo ks
the trends expected for an endoergic system from the work of Polanvi and co-
workers. This trend was also noted bv Gauss for this s.'stem. The classical cal-
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TA-BLE Ill. Cross sections at I-eV total energs for the process H +O0.ic- 0.1 - 0 O+ OH

V 
t'-el (es,

71 i.26

2 .522.3

3 .338 2

culations showed no tendencv of 0, ti' 0) to react. yet the quantum result,
indicate that it should. Gauss essentiall% found no reaction belo%% u =4. We find
the cross sections are small for r < 4. but are considerably larger than the clas-
sical result. Gauss estimates that his v 4 cross section could be loss by as much
as a factor of 10. due to the inability of his integrator to follo%% many comple\
trajectories. We are presentl trying to estimate the error in our result due to
the limited basis set emplo\ .ed.

We find that nonreactive collisions tend to produce vib,-ationajll% excited 0-,
which in turn can react rapidly with hydrogen. A detailed stud.% of this sy.stem
would probably produce many ne\% results and add considerably to our knoss I-
edge of elementary combustion processes.
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Evidence for a quantum resonance in the three-dimensional F + H2 (u = 0,1 = 0) - FH(v' = 2. all/j) + H reaction is pre-
sented. Relative to the collinear reaction, this resonance is much broader and is shifted by about 0.1 eV to higher energies.
This resonance has not been predicted in previous quasiclassical trajectory computations, or in approximate quantum cal-
culations.

1. Introduction resonance in the v = 0 - v'= 2 cross section, with a
peak in the cross section just below 0.4 eV. Resonance

The F + H, chemical reaction has been the subject structure of this type has not been predicted in either
of extensive experimental [I I and theoretical study quasiclassical trajectory calculations or in approximate
[2], at least in part because of its dominant role in quantal calculations [3,4]. However, the magnitude of
powerful F-,H 2 chemical lasers. On the theoretical the cross section and the energy region where the reso-
side, the reaction has been attacked from the view- nance occurs suggest that further crossed molecular
points of classical, semiclassical, and quantum dynam- beam experiments would be extremely interesting in
ics. Prior quantum studies consist of exact collinear testing these predictions. A brief survey of the scat-
computations on several different potential surfaces tering methodology is presented in section 2. New re-
[2] and approximate (Born [3] and distorted-wave suits on reaction probability surfaces and cross sec-
[41) three-dimensional treatments. In addition, we tions are then presented in sections 3 and 4, respec-
have reported preliminary quantum results on the 3D tively.
reaction which are based upon numerical integration
of large systems of quantum close-coupled equations
[51. 2. Scattering theory

In this study, the energy dependence of reaction
probabilities and cross sections for the reactions F + The scattering wavefunction at total angular momen-
H2 (v = 0, / = 0) -- FH(v', all /') + H are reported over tum J is expanded in products of adiabatic hindered
the total energy range 0.32 < Etot 4 0.50 eV (Etans asymmetric top wavefunctions [2,6], 12/M(o80 xt. s),
Etot - 0.27 eV). Evidence is presented for a broad times local Morse oscillator functions, H0(p; s)

This research was supported in part by the National Science g 0 1 ,0 (O Xs P)') -2  od'

Foundation, the Robert A. Welch Foundation, and Battelle U0 )Memorial Institute. X M(0Xy; S)H (p: s) , (1)
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where {, o, X } are Euler angles used to orient the top, (determined by s) of maximum hindrance to rotation.
and ,s, p,K- are natural translation-vibration-bending The surface used for the results reported here is simi-
coordinates [2,61. Also 9 is a metric coefficient which lar to the M5 surface for small deviations from colli-
is used to scale the wavefunction in order to simplify nearity in the transition state region. On the approach
the structure of the close-coupling equations for the or departure from the transition state, the bending po.
translational wavefunctions. TJ 

10 ,(s). In the corn- tentia is similar to the one employed in recent trajec-
putational results reported here, d rovibrational chan- tory studies [12].
nels were employed, with the distribution/ 12/1212/
8;6!2,'2,212/21, where the total number of even j plus
odd j rotational functions in each of the ten lowest vi- 3. Reaction probability surfaces
brational levels is indicated. At the highest energy stud-
ied here, six of these vibrational levels are asymptoti- In fig. la we present sections through the reaction
cally closed in products. probability surface for producing HF' = 2). For each

For all computations with J > 0. the J. conserving value of the total angular momentum J. the variation
approximation [71 was employed to restrict the num- of probability with energy is qualitatively similar to
ber of orbital angular momentum (1) values in eq. (1) that obtained from a collinear calculation on the M
to a single "dominant" term for each value of jand J. surface [10,13] **. As E increases, there is a rapid in-
The same algorithm for selecting 1(j, J) was success- crease and then decrease in the probability, followed
fully employed in earlier H + H, reactive scattering by a fairly constant value at higher energies. One strik-
calculations [7]. In that case, cross sections within ing effect in fig. Ia is the J-dependence of the curves
about 7% of the accurate values were generated with at different constant energy sections. At the position
the J, conserving approximation. of the J = 0 resonance maximum and below, the curves

The close-coupled equations for the translational decrease monotonically with J, whereas at higher ener-
wavefunctions were numerically integrated with the gies the curves are initially fairly constant with J. but
boundary value R-matrix propagation method [8]. re-tune onto higher resonance values at a value of]J
Elements of the S-matrix were then directly generated that increases with energy. The locus of these maxima
from the arrangement channel R-matrices. Reaction in the E- J plane follows the "resonance ridge- that
probabilities for F + H2(v = 0, = 0) - FH(v', all j) + begins for J = 0 at the maximum in the probability
H reactive collisions are defined by curve, and progressively moves to higher J with in-

(open) 1+/' creasing energy. The maximum probability on the ridgeO(E) S(op(E)I 2  (2) gradually decreases as E and J increase. The Pj0 curves
O j,=0 I'= I OJu'j1for the 3D reaction are broader than the collinear re-

sult [10,13,14] due to the participation of many
and were computed for total energies in the range 0.32 (twelve in these calculations) rotor states in the reso-
eV < E < 0.50 eV, and for 0 < J < 26 (in ranges of J nance mechanism, and to changes in the shape of the
for which P'oL was slowly varying, computations were vibrational-rotation adiabatic energy correlation curves
performed at every other J value), with increasing values of J.

In these scattering calculations, we have used a va- In our earlier collinear calculations on this reaction
riety of potential surfaces, all based in part on surface [13 1, we have identified the resonance mechanism in
5 (MS) of Muckerman [9] *. The different surfaces the 0 --2 process. It arises from internal excitation
share the collinear surface of M5, but they differ in and then de-excitation of the FHH intermediate in the
the range and degree of angular anisotropy of the bend- beginning of the FH + H exit valley into primarily the
ing potentials. The bending potentials all have the same v = 3 and 4 states (which may be approximately iden-
functional form, Vbend(7, s) = 2 VO(s) (I - COS 21), tified as asymmetric stretch states) of the vibrational
but differ in the position along the reaction coordinate energy correlation curves. Qualitative similarity be-

tween the collinear and 3D results (at each J) suggests
See ref. 1101 for M5 parameters. For early classical results
on predecessors of the M5 surface see ref. [I 11. For extensive bibliographies see refs. [ 13.141.

210



Volume 63, number 2 CHEMICAL PHYSICS LETTERS 15 May 1979

:: nating resonances or by creating new ones. The effects
we observe by varying the bending potential are not
nearly as severe as those resulting from changes in the
tudes of the resonance probabilities and the values of

J that contribute most to the integral cross sections.

4. Reaction cross sections

- - In fig. 2 we present the energy dependence of cross
sections for reaction of ground state H2 to form HF.
Also shown is a classical total cross section on a slight-
ly different potential surface [12]. There is good agree-
ment below the resonance maximum, but above that

K: energy the quantal and classical results differ substan-
tially. The classical result continues to rise, while the
quantum total cross section levels off, due to the reso-
nance in the 0 - 2 cross section. In earlier collinear

-,: - studies [101, the classical total reaction probability
was also found to exceed (by about a factor of two)
the quantum result, between the classical threshold at
0.29 eV and the energy region where the 0 - 3 reac-
tion probability begins to grow (0.4 eV). However, the
0 - 2 resonance width in fig. 2 is much broader than
in the collinear calculations (where the width is about

0

040
20 E,_ fe6-

30

Fig. 1. Reaction probability surface for F + H2( - 0,j = (v 0)
H + HF (v' = 2.j' = all). (b) Reaction probability surface

for F + H2 (v = 0,1= 0) - H + HF(v' = 3,j' = all). Transla-
tional energy = total energy - 0.27 eV.

that the same mechanism is operating in the 3D colli-
sions.

It is known from other work that variations in the - ,
collinear surface in the saddle-point and downhill re- , E-2,:o e,
gions [(13] and variations of the overall exothericity Fig. 2. Cross sections for forming vibrationally excited HF.and product vibrational spacing [14] drastically affect for all open HF vibrational manifolds. The classical result is
computed reaction probabilities, by shifting or elini- from ref. [121.
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0.01 eV). The broadening mechanism in the 3D case bean studies (on the F + D, reaction [I 01 in lie reso-
arises both from the participation of many rotor states. nance energy region between Eans = 0.05 eV t. I =u.23
and the detailed angular momentum dependence of eV could test these predictions. Resonance stru :ur. ::
the -resonance ridge" in fig. Ia. In our studies on other this reaction should be more amenable to experir:en-
potential surfaces with different bonding potentials. tal study than the vibrational resonance predic:ed to!
the 0- 2 cross section above 0.40 eV never showed the H + H-, reaction [17].

smooth growth that could be extrapolated from the
lower energy region. as in the classical 3D calculations
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ABSTRACT

The accurate ab initio MBPT quartic force field of Bartlett,

Shavitt and Purvis has been fit to an analytical function using a method

developed by Sorbie and Murrell (SM). An analysis of this surface indicates

that it describes most properties of the HO molecule very accurately,

including an exact fit to the MBPT force field, and very close to the correct

energy difference between linear and equilibrium H20. The surface also re-

produces the correct diatomic potentials in all dissociat*.,e regions, but

some aspects of it in the "near asymptotic" O(ID) + H, region are not quan-

titatively described. For ex&mple, the potential seems to be too attractive

at long range for 0 + H2 encounters, although it does have the correct minimum

energy path geometry and correctly exhibits no barrier to 0 atom insertion.

Comparisons of this surface with one previously developed by SM indicates

generally good agreement between the two, especially after some of the SM

parameters were corrected, using a numerical differentiation algorithm to

evaluate them. A surface developed by Schinke and Lester (SL) is more realistic

than ours in the O(ID) + H, regions, but less quantitative in its description

of the H 0 molecule. Overall, the present fit appears to be both realistic

and quantitative for energy displacements up to 3-4eVfrom HO equilibrium,

and should therefore be useful for spectroscopic and collision dynamics studies

involving H2 0.

_ _



I. INTRODUCTION

In a recent paper, Bartlett, Shavitt and Purvis 1 presented the

results of an accurate ab initio calculation of the ground state quartic

force field of H O. This calculation used a many body perturbation theory

(MBPT) method including up to quadruple excitations and a large basis set

(39-STO) wave function to evaluate all of the 31 quadratic, cubic and

quartic force constants in the generalized valence force field. Not all o'

these force constants have been determined experimentally, but where accurate

values are known, the MBPT values are in good agreement with them. Indeed

the MBPT force field may be better than experiment, but in order to use this

force field for spectroscopic or scattering calculations, it must be extended

to map out regions of nuclear configuration space away from the H-0 equilib-

rium geometry.

In this paper, we use the method of Sorbie and Murrell 2 to fit the

MBPT surface to an analytical function. This function identically reproduces

the MBPT H 20 quartic force field, and correctly describes the OQ(D) + H2

and OH(2r ) + H dissociative channels at infinite separation. in between

these limits, a smooth interpolation is provided. We also describe a simple

numerical algorithm for generating the parameters used in the Scrbie-Murrell

(SM) fitting method, and we correct their fit to the spectroscopically

derived force field of Hoy, Mills and Strey (HMS).3

Besides the SM surface, other complete surfaces for H:O(lA1 ) have

been generated by Tully 4a, by Whitlock, Muckerman and Fischer4b (WMF) and by

Schinke and Lester (SL). Tully and WMF used the valence bond diatomics in

molecules (DIM) method to construct their potential surfaces. The two
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surfaces are not identical because of differences in integral evaluation,

bu. neither surface describes the H20 molecule with anything close to

spectroscopic accuracy. SL used a Sorbie-Murrell-like function to fit the

ab initio surface of Howard, McLean arid Lester6 (HML), but unlike SM (see

Section II), they obtained the coefficients in their fit by a least squares

analysis. A fairly widely scattered set of ab initio Doints was used for the

'it, with the result that their surface describes the J^ + H2 and OH + H

regions more accurately than SM, but their H20 force field is much less

accurate (though still better than the DIM ones).

Because calculated rather than experimental dissociation energies

were used for all or parts of the potential surfaces oF Tully, WMF and SL,

certain energetic aspects of these surfaces are in error. For example, the

energy associated with dissociation of H20 to O(
3P) + ?Hi(S) is 10.08 eV

experimentally, but only 9.37 eV on Tully's surface, 9.16 eV on WMF's and

8.95 eV on SL. Likewise, the OH( 2n ) dissociation energy is 4.63 eV experi-

mentally, but 4.54 eV on Tully, 4.58 eV on WMF and 4.04 eV on SL. Both Tully

and WMF do correctly describe the energy associated with O(ID) + H2 O(3P) +

2H(2 S) (2.79 eV) but SL's value is 1.87 eV. In this paper, we use the experi-

mental dissociation energies so as to insure the prooer energetics in all

arrangement channels.

Because the ab initio MBPT points are clustered close to the HO

equilibrium, the present fit describes the H20 molecule prooerties much more

accurately than the 0 + H2 and OH + H regions. This is like the SM surface,

but in the present case, certain MBPT derived quartic force constants not

available to SM have been included in the fitting Drocess. We will examine

here the influence of these additional constants on the long range nature of
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the surface. In addition, a general comparison of the H20 molecule pro-

oerties of the SM, MBPT and SL surfaces will be made.

II. EVALUATION OF FITTED SURFACE

The functional form of the fitting surface for H0 is2

VH 0 (R,,R 2 ,R3) VOH(R,) + VoH(R2) + VHH (R3 )
+ V,(R,R,R 3 '1 ( I,,

where R, is one of the OH distances, R2 the other and Rs the HH distance.

V OH and VHH are the OH and HH ground state potential curves, and are take,

from Ref. 7, while V3 accounts for all 3-body terms in VHO. Not that :r

C

R3 < 1.6707A, HO dissociates into 0('D) + H, (11+) but for R, > 1.6707A, e

ground state dissociation channel is O(3P) + H (37). V incorporates -:ns
2 u HH

behavior by switching from the g to the 3+ potential curves at that P.
g u

value. This leads to a cusp in both V3 and VH 0 asymptotically and neces-
2

sitates the use of a discontinuous form for V3 in order to make VHO conti -

uous near the HO equilibrium geometry.

The functional form of V3 is given by
2:

V3 : A(l-tanh,'1S1/2)(l-tanh'yS 2 /2)(l-tanhy 3S3 /2)P(SlS 2 ,S3 ) (2)

where Si : Ri - R? (i : 1,2,3) and R' is the ith HO equilibrium internuclear

distance. A, Y1, Y2 and Y3 are parameters and P is a polynomial in S1, S-

and S3. This polynomial will have a different representation inside the

above mentioned cusp than outside, and we denote these two polynomials as

in out
P and Pt, respectively.

As discussed in Ref. 2, the coefficients in Pin are conveniently

evaluated when an analytical representation of the HO force field is known
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(near equilibrium) by relating the derivatives of this force field (evaluated

at equilibrium) to those of pin. Although explicit analytical expressions

for these polynomial coefficients were given in Ref. 2, their evaluation is

tedious for all but the simplest types of force fields. A much easier

evaluation of these coefficients can be accomplished by numerical differen-

tiation of

So-VoH(R, )-VoH(R2 )-VHH(R)

(l-tanhvS,/2)(l-tanh v2S2/2)(l-tanhW3S3/2

.hen derivatives of (3) are evaluated at the equilibrium position, the

resulting values are simply proportional to the polynomial coefficients in

- Dout can be similarly evaluated by requiring that the derivatives of

tre potential at S3 = Ss (cusp) (with S, = S2 = 0) be continuous. By using

the previously ottained Pin to evaluate V3 for S, slightly inside the cuso

in Ea. (3) and VHH for S, slightly outside, numerical differentiation of Ea.

(3) directly yields the coefficients of the polynomial outside, as expanded

about the cusp position. Pout can then be reexDanded about the equilibrium

ocsition, if desired, by evaluating its numerical derivatives at that

ocsition. Note that the same numerical differentiation program is used three

in out
times in this evaluation, once in determining P and twice 'or P . By

orogramming this algorithm in double precision (64 bit words) and using a

judicious choice of finite difference increment (I x l- 5bohr for the first

and second derivatives, 5 x 10-4 for 3rd and 4th), even the simplest differ-

entiation formulas8 enable the determination of 4th derivatives to 3-4

significant figures (with much higher significance for the lower order

derivatives). Moreover, this algorithm is independent of the functional

form used to represent the ab initio potential near the equilibrium Position.
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The matching procedure at S3 = S, (cusp) does not guarantee con-

tinuity of the potential across the cusp for S, S-. This deficiency was

corrected by switching between polynomials at the cusD using the expression

in in 2 out out
P = A P sin w + A P cos% (4)

where
= 4 ll-tanhYs[S2 -S2 (cusp)]} (5)

The value of oarameter 's determines the range of mixing of the two poly-

nomials on either side of the cusp.

The resulting polynomial coefficients usirg the SDQ-MBPT(4)

potential force field of Ref. 1 are listed in Table I (labelled MBPT). Also

given are the other parameters in V3 mentioned previously (YI, 7 and Y.

are taken from Ref. 2), and the analogous coefficients and parameters in a

fit (using our method) to the spectroscopically derived force field of Hoy,

Mills and Strey3 (labelled HMS). This latter force field was also fit by

Sorbie and Murrell, and in Table I, we list their oarameters (labelled SM{).

Since the same method of fitting was used in each a::' ication, the S! and

HMS oarameters should be identical. Table I irniza:es tnat mos: of tne

parameters agree to 3-4 significant figures. Tw- sezs o- coefficients are

very different however. The SM coefficient multiplyinc S, is of similar

in outmagnitude but opposite in sign to ours for both pi and pO, while the

coefficient multiplying SIS 2 differs by a factor of about 3. The origin of

these differences is not known, but in the next section, we shall see that

they cause SM's potential to have slightly different quartic force field

parameters than HMS, even though SM is supposed to be a fit to HMS.

Comparison of the HMS and MBPT Darameters in Table I indicates

good agreement for the lower order coefficients, but only qualitative agreement
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for the higher order ones. The influence of these higher order coefficients

on features of the potential surface will be considered in the next two

sections.

III. PROPERTIES OF FITTED SURFACES

A. HWO Force Field Parameters

The first requirement of the MBPT fitted sur race is that it should

be able to reproduce the MBPT quartic force field exactly. A convenient

r~presentation of this surface involves an expansion 4n sca~ed normal mode

coordinates.9  If Q is the normal coordinate for mode s, then the dimen-

sionless coordinate qs is defined by

qs = 27 (S_ )I/2 Qs (6)

and the potential VH20 is expanded as

VH 0 /hc = T(c.:la12 + w2q22 + ,3qz
2 )

+ klllql 3 + k12 2 qlo 
2 + k1 33qlo -q - 2q -

+ k2 22q2- + k2 3 3q2q3
2 + kiiiiqL ' 

+4 k 1 Z2q1
2,2

+ k1 13 3q1
2q3

2 + k22 22q2 4 + k2 2 33q2 q3
2 + k3333q;* (7)

Values of the coefficients in this expansion for the fitted MBPT surface are

given in Table II. The MBPT fitted surface is labelled MBPT-F, while the

quartic representation used to generate the fit is labelled MBPT-Q. Like-

wise, our fit to the HMS-Q surface is labelled HMS-F, while Sorbie and

Murrell's fit is labelled SM-F. Also included in this Table are the analogous

coefficients obtained from SL's surface.
5

V .-- . -- - -- - -- -
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We note first in Table II that all the quartic parameters obtained

from our fits to HMS-Q and MBPT-Q agree with those of the surface beina fit

to within 0.3 cm- I or better. The agreement should, of course, be exact, and

for most parameters, it is. A few parameters are slightly different, probably

because of round-off errors in the 4th derivative evaluation used to generate

the fitted surfaces.

SM-F's parameters differ from HMS-O by as much as 7.7 cm probably

betause of the differences in coefficients noted in Table I. SL's parameters

in Table II are very different from either MBPT-Q or HMS-Q (over 330 cm- I for

although most of the parameters have at least qualitatively reasonable

values. The large differences between the SL results and those of the otner

surfaces are at least partially due to the lower accuracy of the ab initio

results being fit,6 and partially to the least squares procedure used by SL to

fit HML's points (SL's fitting method places less emphasis on the H,0 eouilib-

rium geometry), It should be noted that the equilibrium HO geometry o" these

surfaces shows variations similar to those between the force constants. This

is indicated in Table III, where the OH equilibrium distances and HZO ancle

are listed. Also included in the table are the values of VHO at equilibrium

for a number of H2O potential surfaces. As noted in the introduction, the

values for the SL, WMF and Tully surfaces differ by roughly 1 eV from the

experimental value.

B. Other Properties of MBPT-F and Other Surfaces

In Fig. 1 is plotted V as a function of the H2O bending angle

a (with S1 = S2 0 0) for the MBPT-Q, MBPT-F and SL surfaces. The correspond-

ing curves for HMS-Q and HMS-F are quite similar to MBPT-Q and MBPT-F,
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resoectively, in the figure. Notice how the MBPT-F curve is considerably

more repulsive than MBPT-Q for small s and less for large ;£. The SL curve

is qualitatively similar to MBPT-F for large ® but not for small.

Of particular interest in the analysis of the bending potential

is the characterization of linear H20. None of the quartic force fields are

even qualitatively correct for that geometry since the correct potential has

a saddle point there while the quartic representations have a nonzero value

of 'VHo c at .= -. All of the fitted surfaces do have saddle points, and

the properties of thcse are summarized in Table IV. Of particular importance

in this table is the energy difference LV between the saddle point energy and

the water equilibrium energy. Experimental estimates of this barrier1
0

indicate a value 1.37 eV, which is in best agreement with the MBPT-F value of

1.296 el/. The HMS-F value (1.168 eV), which is very close to SM-F (1.175 eV),

is too low while SL's value (1.708 eV) is much too high. It is also inter-

esting to note that although the HMS-F and MSPT-F R, values in Table IV are

only slightly smaller (<O.OIA) than at equilibrium, SL's value is O.OA

smaller. SL's saddle point frequencies are also appreciably different (300-

300 cm"1 ) from MBPT-F or HMS-F.

In Figs. 2 and 3 are plotted contour diagrams of the MBPT-F surface

as a function of the two OH distances R, and R2 for the equilibrium and linear

H20 configurations. A cut through Fig. 2 corresponding to symmetric bond

stretching displacements is given in Fig. 4. Included in this figure is a

comparison of the MBPT-Q, MBPT-F and SL surfaces. There is good agreement

between HMS-F and MBPT-F for symmetric bond stretch displacements exceot at

very large and small values of R,, so we have not plotted the former curve in

the figure. Fig. 4 does indicate that the MBPT-Q potential is more repulsive
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than MBPT-F at both large and small RI. The difference between MBPT-Q and

MBPT-F remains smaller than 0.1 eV for displacements over 2 eV away from

equilibrium. This contrasts with the behavior in Fig. I, which indicates

0.1 eV differences only 0.7 eV above equilibrium. Since the analogous com-

oarison for the asymmetric bond stretchinq potential indicates excellent

agreement between MBPT-Q and MBPT-F for several eV displacements, we conclude

that the most serious errors in the quartic representation of the HO Dotential

arise for bending displacements. These errors can be important even for the

low lying vibrational states of H20 since the vibrational zero ooint energy

(0.59 eV) is comparable to the energy displacement needed to make the difler-

ences between MBPT-F and MBPT-Q large.

Comparison of the SL and MBPT-F curves in Fig. 4 indicates reasonable

correspondence for large R, corresponding to 3-body dissociation. This

indicates that at least for coordinate displacements of the type indicated,

the fitted MBPT surface agrees with one known to be more accurate asymptotically.

C. Surface Properties in the O(ID) + H, Region

In Fig. 5 are plotted contours of the MBPT-F surface corres:ondina

to C2 v symmetry collisions of O(ID) with H2 . The distance X in the figure

is the oxygen atom to center of mass of H2 distance. Previous ab initio

studies have indicated6'11 that the minimum energy path for 0 (ID) + H,- OH + H

follows this and similar geometries, and the present MBPT-F surface concurs with

this. Two cuts through the contours in Fig. 5 are plotted in Figs. 6 and 7.

Fig. 6 plots the MBPT-F, HMS-F and SL values of VH0 versus X for the

equilibrium H2 value of R,, while Fig. 7 presents the analogous plot for the

eouilibrium H20 value of R . No barriers are evident in the potential curves

2 3
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for any of the three surfaces. This agrees with the results of Ref. 5, but

disagrees with the barrier found by Gangi and Bader . Since the experi-

12
mental activation energy for O(ID) + H2 is apparently zero , we presume that

the zero barrier result is correct.

Fig. 6 indicates that for R3 equal to the H, equilibrium value, the

MBPT-F and HMS-F potentials exhibit strong attractive behavior at much larger

X values than SL. Since the minimum energy paths for large X follow the curves

in this fioure, we conclude that the HMS-F and MBPT-F minimum energy paths

have much more attractive profiles for large X than SL. Close to H20

equilibrium, the minimum energy paths switch to the curves depicted in Fig. 7,

where the MBPT-F, HMS-F and SL curves are quite similar. Thus it is only at

larger distances where there is much discrepancy between the surfaces, and we

find that even in this limit, the MBPT-F and HMS-F are still very close. This

suggests that the quartic terms in the force fields (which differ substantially,

between MBPT-F and HMS-F) do not play an important role at the larger distances

considered. In Ref. 5, the differences between SM-F (which is close to HMS-F)

and SL were traced to the switching function parameters ', 2 and "3 in V .

The values used by SM (and by us) are a factor of two larger than those used

by SL. This causes V3 to be cut-off more rapidly in displacements from

equilibrium for the MBPT-F and HMS-F potentials than SL. This explains why

the different quartic potentials used by MBPT-F and HMS-F have so little

influence on the shapes of tne curves in Fig. 6. Since SL's curves acreed

well with HML's ab initio results in this region, it seems likely that the

SL curve is more accurate than MBPT-F and HMS-F in this region. This differ-

ence does not have a strong effect on the thermal rate constants, however. At

300 K, SL found that thermal rate constants for their surface were about a

factor of 2 lower than SM-F. Since both results were within experimental

L
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uncertainties, no definitive statement concerning the relative accuracies of

the two surfaces can be made based on this comparison. The larger value of

the SM-F rate constant is consistent with the longer range of the attractive

part of that potential surface. This is very likely to be true with the

MBPT-F surface as well.

It is also of interest to examine the behavior of the potentials

for linear OHH configurations. Here, in agreement with Ref. 5, we find that

the SM-F, HMS-F and MBPT-F surfaces exhibit wells while the SL surface has a

small barrier followed by a monotonic decrease in energy along the reaction

0 
0

oath going to OH + H. The MBPT-F well occurs at R, = 1.054A, R3 = 1.005A,

and has an energy of -5.961 eV relative to O(3P) + 2H( 2S) (1.329 eV below the

OH(2 - ) + H arrangement channel energy). The HMS-F well occurs at R, = 1.029A,

R = 1.016A, with an energy of -6.076 eV (1.4 44 eV below OH + H). The SM-F
C 0

well occurs at R, 1.02A, R3 = 1.02A, and is 1.47 eV below OH + H". The SL

barrier is at R, 1.18A, R3 = 0.76A, and has an energy 1.3 kcal/mole above

O(ID) + H, (2.23 eV above OH + H). The wells observed for the MBPT-F, HMS-7

and SM-F are all well above H20 equilibrium, but they are orobably artifacts,

as no ab initio or semi-emoirical evidence supports their existance.5 The

MBPT-F well is only slightly smaller than HMS-F, which indicates that neither

the additional quartic terms present in the MBPT-Q potential nor the more

accurate MBPT-Q force constants has much influence on this artifact.

IV. CONCLUSION

In this paper, the accurate MBPT quartic force field of Bartlett,

Shavitt and Purvis has been fit to an analytical function using a method

developed by Sorbie and Murrell. Properties of this surface have been

analyzed and compared with those of previously determined surfaces (including
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a reparametrized SI fit to the HMS force field). Our analysis indicates that

this fitted MBPT surface describes the properties of the H-0 molecule

ex: emely well. In addition to reproducing the MBPT quartic parameters at

the equilibrium geometry, this surface reproduces the known energy associated

with straightening the H20 molecule better than any other global surface. Far

away from equilibrium however, this surface is much less accurate. For the

0(.J) + H, arrangement channel, the surface shows a much longer range attractive

potential than has been observed in ab initio calculations, although the error

in thermal rate constants introduced by this feature is apparently inside

experimental uncertainties. In addition, the 0 + H2 linear geometry exhibits

a spurious minimum. These errors all arise for geometries where the 2-body

part of the potential has largely been damped out, so that the more accurate

quartic force field used to represent HO in this surface has no corrective

influence. Evidently to improve upon the surface in these regions it will be

necessary to use higher terms than quartic in the H20 force field, or an

improved choice of the damping coefficients Y,, Y2 and ', or the explicit

incorporation of ab initio points far removed from HO equilibrium in the

fitting algorithm.

Despite the apparent inadequacies of this surface in the O(ID) +

H, regions, it does provide an excellent representation of the H.0 potential

close to equilibrium (probably for energies as high as 3-4 eV above the H-0

minimum). As such, this potential should be useful for spectroscopic studies,

and as the intramolecular pctential in nonreactive collision problems involvino

H 20 as one partner. Indeed for both such studies, the MBPT-F surface is much

to be preferred over its quartic counterpart, for important deviations

between the quartic and full surfaces can occur for bending displacements only

0.7 eV above H 20 equilibrium.

• - . ..... ..II1 I .. .I ~ ll2
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The comparisons of the MBPT-F surface with others indicated that

it is very similar both qualitatively and quantitatively to HMS-F (the

latter being close to but not quite the same as SM-F). Near H20 equilibrium,

the MBPT-F is qualitatively similar to but quantitatively different from tne

SL surface, with SL the less accurate, while far from equilibrium (in the

0 + H2 region), it appears that SL is the more accurate surface. Of course,

the exact surface characteristics in the far from equilibrium configuraticns

are still not known very quantitatively.
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TABLE I. POLYNOMIAL COEFFICIENTS IN 3 BODY FITTING TERM

piSns<S?(cusp)] Pout[s,>S (cusQ)]
Term SM HMS MBPT SM HMS MBPT

1 1 1 1 1 1 1
S,(S 2 ) 1.5421 1.5402 1.5207 1.8750 1.676 1.8559

So 4.6539 4.6551 4.6455 -0.3691 -0.3582 -0.35631

S.2 (S,2 ) 1.5720 1.5748 1.2746 3.1767 3.1773 3.0102
S- -4.4355 -4.4369 -4.8014 -2.4168 -2.4096 -2.6085

S:S:(S-S-) 17.9914 17.995 18.049 3.1803 3.18a9 3.231-'

S:S- -1.9761 -1.9861 -1.7863 1.2577 1.2402 1.3496
S- 3 (S9-) 6.5279 6.0132 4.3146 ,.1737 6.8763 5.94,1

S-- -7.5781 -7.5742 -9.3266 -5.2200 -3.2016 -6.1567
S,S2

2 (SS,) 4.9240 5.0266 10.088 8.1229 8.1405 1C.893

S,S2(S 2 S9) 11.3559 11.391 14.816 6.2908 6.2925 8.1619

S-2 S;(S, 2 S:) 22.3568 22.279 21.204 -2.2456 -2.2399 -.2.7979

S-SISI:  23.1978 23.089 12.017 -1.7899 -1.8101 -7.8076

S.1(< 0.6787 -0.5793 -3.6377 0.3677 -0.3056 -1.9702

S-" -11.4851 -11.478 -14.031 -6.7255 -6.7552 -8.1599
S- :Sz(S 3S.) 1.5255 0.5220 -2.5556 0.8266 0.3061 -1.3837

S:S2 -5.792A -5.9434 4.2511 -3.1387 -3.2029 2.3532

S,, S. 2  59.6057 59.011 63.497 9.1025 8.860d 11.376

S:25S-(S 2 S)) -22.2496 -22.368 -21.790 -15.1988 -15.311 15.002

SS)(S-S, -f) 20.8998 20.982 23.152 8.0856 8.1767 9.3882

S23- -18.3900 -18.712 -20.269 -13.1075 -13.316 -Ia.186
S: 2 S2 3-(S1S 2 S3 ) 93.5650 93.800 86.304 15.9060 16.160 12.198

Ain(eV) -0.9418 -0.94159 -0.94354

AOUt(eV) -1.7381 -1.7346 -1.7344

S,(cusp)(A) 0.1568 0.15677 0.15638

4.5348 4.5348 4.5348

S(A l ) 2.0 2.0 2.0

Ro'(A) 0.9572 0.9572 0.95680

RHH(A) 1.5139 1.5139 1.51429

-- -- 25.0S
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TABLE II. QUADRATIC, CUBIC AND QUARTIC FORCE FIELD
PARAMETERS FOR H20 SURFACES

HMS-Q HMS-F SM-F MBPT-Q MBPT-F SL

3831.5 3831.4 3832.0 3865.0 3864.9 3530.2

1648.8 1648.8 1648.6 1687.4 1687.4 1568.2

3942.2 3942.1 3942.6 3975.0 3975.0 4039.2

kl. -302.5 -302.5 -304.9 -304.2 -304.2 -270.7

k 2 2  63.6 63.6 63.6 42.9 42.9 10.1

k:- 2  167.4 167.4 168.2 148.6 148.6 235.7

k_,: -53.1 -53.1 -53.7 -61.8 -61.8 -49.0

k, -.- -927.8 -927.8 -935.5 -914.1 -914.1 -840.9

k,-, -138.8 -138.8 -139.2 -111.7 -111.6 -36.9

k,... 31.9 31.8 31.8 31.5 2! 5 34.6

kzz--2 2.1 2.1 2.1 -2.6 -2.6 25.2

ki- 3 3  35.4 35.4 35.3 32.0 32.0 12.0

k, :22 -85.6 -85.4 -86.2 -75.1 -74.8 -65.3

kl 33 201.3 201.4 201.3 190.3 190.4 152.5

kZ2: 33 -101.1 -100.9 -101.5 -91.7 -91.4 -98.0
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TABLE 711. EQUILIBRIUM PROPERTIES OF H20 MOLECULE

a bc
Surface VHO(eV) RiA ) %

SM-F,HMS-F,Exoeriment -10.0705 0.9572 104.52

MBPT-F -10.0705 0.9568 104.62

SL -8.95 0.9867 103.98

WM~F -9.16 0.9778 92.81

Tul ly -9.37 0.979 100.3

(a) Potential at H,0 equilibrium geometry [relative to 0('P) +H(3

(b) OH equilibrium Position+ S]

(c) H20 angle



TABLE IV. PROPERTIES OF LINEAR 40H SADDLE POINT;

a b c 0  d ef
Surface V H0(eV) .,V(eV) R(A) (cm) 2(crn1) w(r 1

H-MS-c -8.902 1.168 0.9506 3577 1407i 4064

MBPT-F -8.774 1.296 0.9480 3595 1502i 4005

SL -7.083 1.708 0.9469 4399 1867i 4618

(a) Potential at saddle point relative to O(3p) + H(7S) + H(IS)

'b) Difference between saddle point energy and corresponding H20 equilib-
rium energy

,c) OH distance at saddle point

'd', Symmetric stretch frequency

:eq' Bend frequency

(f: Asymmetric stretch frequency
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FIGURE CAPTIONS

FIGURE 1. MBPT-Q, MBPT-F and SL potentials (in eV) versus HOH bend angle
for R1, R2 fixed at their equilibrium values.

FIGURE 2. Equipotential contours of VH20 (MBPT-F) versus RI, R: for s

fixed at its enuilibrium value. Contours are in l eV increments
starting with the lowest at -10 eV relative to O(3P) + 2H(2 S).

FIGURE 3. Contours of VHO (MBPT-F) analogous to Fig. 2, but for Z = 1800

(linear HOH). -

FIGURE 4. MBPT-Q, MBPT-F and SL potentials (in eV) versus RI for R, = R2
and I at its equilibrium value.

FIGURE 5. Contours of VH-O (MBPT-F) versus X and R, for perpendicular 0 + H-

geometries. The distance X is the 0 to center ol mass of H2 dis-

tance. Contours chosen are the same as in Fig. 2.

FIGURE 6. MBPT-F, HMS-F and SL potentials versus X for perpendicular 0 + H-
and R, equal to the Hz equilibrium distance.

FIGURE 7. MBPT-F, HMS-F and SL potentials versus X as in Fia. 6, but for R

equal to the H20 equilibrium H, distance.
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Abstract

We calculate the adiabatic potential energy curves and nonadiabatic

1 +
first-derivative couplings for the X, A, and C + states of KII by an ab initio

one-electron pseudopotential formalism. The splitting of the X and A curves

at the avoided crossing is in good agreement with experiment. The ab initio

results are used to calculate the electronically inelastic transition proba-

bilities and cross sections for K + H collisions at low energies by R matrix

propagation in the adiabatic representation with exponential sector trans-

formations. Since this method has never been applied before, we made an

extensive study of its convergence properties and efficiency. We found

it to be a convenient, accurate, and efficient method. The cross sections

are changed by about a factor of two when the potential curves are changed

by a different treatment of the KH+ core, but only by about 1% when the

assumptions about the nonadiabatic second-derivative coupling terms are

altered. Our estimate of the 42 P-4 2S quenching cross section at 0.022 eV

relative translational energy is 2-4 x 10-4 a0 . This increases to
-4 2s

8-10 x 10-4 a02 by 1.1 eV. The emphasis in this article is on testing and8-10

evaluating the new method for solving the scattering problem rather than

on the cross sections themselves.

I.!
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I. INTRODUCTION

The standard quantum mechanical treatment for low-energy atomic and

1
molecular collisions is the close coupling method. When more than one

electronic state must be considered, one can use an adiabatic or a diabatic

representation for the electronic wavefunction. The diabatic representation

has the mathematical convenience of no derivative coupling operators, but

it is not unique. 2,3 One way to specify it completely is to define it by

a transformation from a finite numbe: of adiabatic states, where the trans-

formation is defined by requiring the first-derivative coupling to vanish

in the finite manifold. It is also possible to solve the coupling equations

directly in the electronically adiabatic representation, including the

derivative coupling. A new method for doing this has been proposed by

3
two of the authors, and it is applied here for the first time. The method

involves R matrix propagation and requires as input only the adiabatic

potential curves and first-derivative coupling matrix elements obtainable
4

from standard electronic structure calculations. For the present appli-

5-11
cation we consider collisions of K with H, we consider only radial

1i,+
coupling between L states, and we obtain the adiabatic potential curves

and first-derivative coupling matrices by ab initio methods.

Section II presents the coupled-channels scattering equations and the

details of how we solve them. This section also compares the new method to

the method Johnson and Levine proposed for this problem and to a method

one of us and Wyatt 1 3 have applied to solve reactive scattering problems

in vibrationally and rotationally adiabatic representations. Section III

gives details and results of the electronic structure calculations performed

to -enerate the input to the scattering equations. Section IV presents the
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details of the scattering calculations, section V presents results, and

section VI is discussion. The emphasis in the present paper is on evaluating

the new method for solving the scattering equations rather than on the

cross sections themselves.
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II. THEORY

A. New method

Consider the coupled states of a diatomic system with nuclear masses

mA and MB and Ne electrons each of mass me. The total Hamiltonian is given

by

2 " 22ti 1 - L __ _2.

(R- 7 -+7 (1)SAB 9R 2 2 e R  2(mA +m B ) ij
AB ~R 2 R ARB i r ir.

where R is the internuclear distance, r. is the vector from the center

of mass of the nuclei to electron i in the body-fixed frame, L is the

angular momentum operator of the relative motion of the nuclei, 1AB is

the reduced mass for this motion, and H is the "electronic Hamiltonian"
e

2

H (R) = - -- 2 + V(x,R) (2)
e 2m . r.

e i I

N
where we have denoted as the collection of electronic coordinates r !iN e1

and V(x,R) includes all the pairwise coulomb interactions between nuclei

and electrons.

The radial coordinate is subdivided into sectors numbered (i), and

within each sector the total wavefunction T( ,R), where q0 denotes the
q0

initial conditions, is expanded in an orthogonal, approximately adiabatic

bais a(Q;i) which is independent of internuclear coordinate:

a(~, ,a= (,i X (Ri) (3)

where is a row vector of elements a , is a column vector, each column

a a
of < is a different linearly independent solution, and each row of

corresponds to one of the channels.
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The approximately adiabatic basis states in sector (i) are chosen to

diagonalize the molecular electronic Hamiltonian in the body-fixed frame

at the center R of the sector, i.e.,
C

fdx a( ;i) He(R) a (x;i) = 6 E ai) (4)q eC q(;i n = qlq q

Coupled radial equations for each sector (i) are obtained by substituting

eqs. (l)-(3) into the time-independent Schrddinger equation for total energy

E, and closing on the left with an adiabatic basis function pa (x,i). Neg-

lecting the mass polarization term [last term of eq. (1)] and Z-7 coupling,

the coupled equations in sector (i) are

t2 d2 I (Z+1) a
__ _ 2 I + E (i) - E}X (R;i)

2AB dR 2 R 2q 1  q 1q0
+ a Xa

+ V (R;i) x (R;i) = 0 (5)
q q1q qq0

where

a a* a a
V (R;i) = Jdx Ia (x;i) H (R) i(x;i) - (i) 6 (6)
qq -q 1 - e q, q qlq

The matrix elements Va (R;i) are defined for all values of R in sector (i)
qIq

using basis functions that would usually be used only for calculations at

the center of the sector; these matrix elements are zero at the center R i

aC
of each sector. Also, because the basis functions ta (;;i) are independent

of R within a sector, the coupled radial equations in each sector contain

no derivative coupling terms. A more convenient form of eq. (5) is

d2  a a

dR

where

.
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2, I ' i a . Ea) a,,) 1 ) (Z(;,+l)
RR i) =n -  E 1 (R;i) )(i) 2 -

2 AB

and the diagonal matrix Ea (i) is given by

Ea a(,) (9)
qq1  q qq1

Using standard numerical techniques, the radial wavefunctions X a(R;i) can

be propagated from the left side to the right side of sector (i). Continuous

solutions with continuous first derivatives are obtained for multi-sector

regions by imposing the following matching conditions at each sector boundary

(x, R  ) (;,)10
q R q

d T(i-l), Ri-l d T
dR q " R dR q

where N(N) is the value of R at the right (left) boundary of sector (i).

Substituting eq. (3) into eqs. (10) and (11) and rearranging yields

d a. i-i-) = T1-~) ai
d- (R ;i = T (R;i) (12)

i-1) = T(i-1; )X( ;i) (3

where

q (i-l;i) = fdlx*xq il)q (x;i) (14)

qql- q ql~

Equations (12) and (13) provide the initial conditions for propagation

across sector (i) given the solution in sector (i-i). Thus a continuous

solution can be constructed over the entire scattering revion. The equations

presented so far are essentially the same as those in the method proposed

12by Johnson and Levine. However, instead of requiring an explicit evaluation
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of the inconvenient overlap-type integration in (14), we relate the trans-

formation matrices T(i-l,i) to the standard nonadiabatic derivative coupling

matrices.

To accomplish this, we define

Ia 1i a I
Mq( (R Cy) S (XRC)I1a(XRC + y)> (15)

where the matrix element indicates integration over the electronic coordi-

nates. Then

T(i,i+l) = M(Rc, 2 (16)

where h. is the length of sector (i). Differentiating (15), we obtain1

Ms (Rc) = < (x,Rc) y  ( , RC + y)> (17)

2 AB a"- SlZ M (R1,y) (R1 + y) (18)

Sss 1  C'- s 1q C

where a (r) is the nonadiabatic derivative coupling matrix defined by

F a (R) = ; ,a
2R AB (x,R (x,R)> (19)

In obtaining eqs. (18) and (17) we assumed that a(,,i) form a complete set

of states. When this approximation is used in coupled-channel calculations

employing a truncated set of states, its validity can be '.Sured by obtaining

converged results with respect to increasing the basis size. The effects

of this approximation for finite basis sets are discussed further in the

Appendix. Equation (18) can be solved numerically for M(R ,y) using the
M sC-

Magnus method,
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M'(R',v) =M(R' 0) exp [N(R ,yI(20)C C- C

where

S(Rcy)= %B dy' F (RI + y )

+ 2( d)2 Ydy' fY dy"[Fa(R + v'),F a ( RI + ... (21)
'2 0 0

and

M (R , 0) = 1 (22)
S C'

Let R be the midpoint between sector centers

i_ i+l.

R (Rc + R ) (23)CC

and expand the coupling matrix in a Taylor series around this point

dFaa i a ii
S(Rc +y) F (RI (24)

hi + hi+1

Substituting (24) into (21) and retaining terms through order 2 yields

S R2 (25)

' C? 2 2 2

and, by (16) and (20),

2vAB hi+hi1 F a i h +hil3

T(i,i+l) = exp - AB i i+l a ( i)] + 0[( h . (26)"I , 2 2 N P1

This completes the derivation of a way to perform the sector-boundary matching

of (12) and (13) by using the standard functions ,a (R) rather than the non-

standard overlaps of (14).

The essential step in the new method is eq. (26) for the sector trans-

formation matrix. We note that this expression is identical to the sector

kL L
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transformation matrix given in eq. (12) of reference 13. The derivation

and the context are different, however. In reference 13 the problem con-

sidered was reactive scattering in a vibrationally-rotationally adiabatic

basis, and the propagation of the radial wave functions of (7) from RL to

R was accomplished by the first order Magnus method. 14 ,1 5  In the present
R

case the internal degrees of freedom being considered are the electronic

ones, and we will accomplish the propagation across a sector by the R matrix

3,16-18
propagation method. Comparison of the approaches illustrates that

eq. (26) provides a general sector transformation matrix for solving scat-

tering problems in adiabatic bases. For problems involving both electronic

and vibrational-rotational degrees of freedom, such as electronically inelastic

atom-molecule or molecule-molecule scattering, it is possible either (i) to

use (26) or eq. (12) of reference 13 to treat all degrees of freedom in

an adiabatic representation or (ii) to treat electronic degrees of freedom

in an adiabatic representation and to treat other degrees of freedom by

the diabatic representation that is more standard1 9 for vibrational-rotational

degrees of freedom.

B. Standard methods

To compare with the adiabatic-at-the-center-of-a-sector method given

above, we present here the equations for the standard adiabatic and diabatic

propagation methods.
20

a

Using a continuous adiabatic basis a (x,R) the coupled equations analogous

to eq. (5) are

2 2
2 d2 

-(+i) + --- + (R) + 2F(R)d + G(R) a (R) = 0 (27)
22 2 R2 2a R)

.B dR R 1W
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where

E (R) = e'(R)f (28)qqI q qq1
a 2 2¢(R a2

Ga  (R) (x,R) (xR)> (29)qq 2uAB q ' R" ql

and Fa (R) is defined in (19). Equation (27) contains the radial-derivative

couplings Fa(R) and Ga(R), but the angular-derivative couplings do not appear

because we restricted ourselves to r states at the beginning of section II.A.

a aNote that k (R;i) and xa(R) become identical in the limit of small sector

sizes. The first-derivative coupling term can be eliminated from (27) by

transforming to an orthogonal diabatic basis such that the transformation

matrix (R) obeys the following equation

2 dA B U = F (R)U T(R) (30)
14AB dR % I

The transformed coupled equations are then given by

h d z ( ~ t ~ l 2 A B Edd
22 d2  Z(Z+I) + 2 +H d(R) +G d(R)Xd (R) 0 (31)

2AB'dR
2  R2  2

where

d (R) = U (R) Ea (R) T (R) (32)

d aX (R) = U(R) X (R) (33)

and the second-derivative coupling in the new basis is

d dFa 2 2AB TG (R) = U (R) aR) - + -'A'-[Fa(R)] U (R)34)

It can be shown that in the limit of a complete basis

dFa 2w
CR) a (aR)] (35)dR 2 \

and thus G d(R) vanishes in that limit. The diabatic basis defined by equations

(30) and (32) is a P-diabatic basis in the terminology used in references 2

and 3.



III. SYSTEM AND METHODS

The system studied for a test case is K + H. The adiabatic potential

curves were calculated by a one-electron modelI I1 2 1 for alkali hydrides

involving effective core potentials to represent K+ and H. This method

is described in reference 11, and the effective core potentials and orbital

basis set used are also given there. The three lowest-energy adiabatic

states a(x;R) of IZ+ symmetry were calculated by diagonalizing the one-

electron Hamiltonian in the orbital basis. The potential curves for these

states were calculated by adding the energy of the KH core to the one-

electron eigenvalues. The KH
+ core energy is approximated by a full KH+

calculation or by a calculation on KH+ employing only a single H ls basis

11
function. Following reference 11, we call these two choices methods

21 and 2H, respectively. As discussed there, method 2H is expected to

be the more accurate one. The derivative coupling matrix Fa(R) was then

calculated from the wave functions by using

<a (x;R)__, (x;R) > = 1im - TMk(R, ) (36)j n, 13Rk 6 6-0 6jk

since <4j Hk> = 0. A value of 0.001 a0 was used for 6. For calculating

the overlap integral M1k(R,6 ), defined by (15), the K nucleus was fixed

and the H was moved by the amount 6. This corresponds to placing the origin

of the electronic coordinate system at the K nucleus, and it makes the

3 - 3 submatrix of a(R) for the states considered here tend to a null matrix

at R = -, which makes it straightforward to impose scattering boundary conditions.

Other possible choices of electronic origin are discussed elsewhere.
3 , 22

The calculated adiabatic potential curves ca (R) are shown in Figure 1,
q

and the calculated first-derivative coupling matrices are shown in Figure 2.

In Figure 2 we use the notation



a a
Fa(R) = -(~/2uB) f(R) (37)

AB ~

Transforming away the first-derivative coupling by the 3 x3 matrix U(R)

yields the diabatic Hamiltonian matrix Hd (R) whose elements are illustrated

in Figures 3 and 4.

The results are given in hartree atomic units: 1 a.u. energy = I hartree

0
1 Eh = 27.212 eV, and 1 a.u. length = 1 bohr =1 a0 = 0.52918 A.
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IV. SCATTERING CALCULATIONS

We will compare several different methods for solving the scattering

problem.

A. First order Magnus approximation in the adiabatic representation.

In this method we rewrote (27) as

dY a- = k(R) ya (R) (38)

where

= x a(R)
Da(R) = a39)

dR/

A(R) =(40)

and

2wAB a(aR) Z(.Z+l)
(R) E 2[E(R) + Ga(R) + ( 2(+I E)I](1

2pAB
R 2

Equation (38) was integrated by the first order Magnus approximation

Ya(R+h) = exp[hA(R+ h)]ya(R) (42)

7
The exponential was evaluated by a power series, retaining terms through h

5
Checks showed that the same results were obtained by retaining terms through h

The scattering matrix was evaluated by applying boundary conditions to

Xa(R) in the usual way. 2 3 We employed a fixed stepsize h and decreased it

till convergence was obtained for the absolute squaras of scattering matrix

elements.
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B. First order Magnus approximations in the diabatic representation

with power series evaluation of the exponentials. In this method we rewrote

(31) as

dyd ~dd- - (R) Y (R) 
(43)

where

X d(R
Yd (R) -- (44)

dx

dR(0'
B(R) = (45)

Dd(R) 0

and
d 2 UAB d(d2____+_i)

T) d(R) =2u A [H(R) + G d (R) + 2AB2 -E)I1 (46)
1 t 2 2 iABR2

Starting with the same input, Ea(R) and Fa(,)' as for method A, we integrated

(30) simultaneously with (43) so that we could calculate B(R) from (32), (45),

d
and (46) as we needed it. We assumed Gd = 0 as discussed after (34). The

first order Magnus approximations are

U T (R+ h) = exp[-hf a (R)I Ur (R- h) (47)

and

yd(R+h) = exp[hB(R+.h)] yd(R) (48)

In (47) and (48) the exponentials were evaluated by power series through h7 .

The boundary conditions and stepsize were handled the same as in method A.
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C. First order Magnus approximation in the diabatic representation

with analvtic evaluation of the exponentials. This method is the same as

method B except for the evaluation of the exponentials. The exponential

in (48) was evaluated analytically in terms of the eigenvalues and eigen-

vectors of D d(R) as explained by Light. 15 Since we still assume Gd (R) = 0,

the eigenvalues are the already-available ca(i) and the eigenvectors are
q

the columns of U(R ). The latter are obtained from (47), but in this method
.he

the exponential in (47) was evaluated analytically. Since fa is skew sym-

metric, the exponential in (47) can be evaluated in terms of f12a f1a and

f a This kind of procedure is very efficient for 2 x 2 and 3 x 3 cases, and
23'

we used it for the calculations reported here. For matrices of order greater

than 3, the exponential of a skew symmeteric matrix can be evaluated efficiently

by diagonalizing the square of the skew symmecric matrix.24 ,25 The boundary

conditions and stepsize were handled the same as in method A.

D. R matrix propagation with adiabatic basis functions at sector centers

and with the exponential sector transformation matrix. This is the new

method of reference 3 and the present paper. The propagation across a

3,15-17
sector was accomplished by the R matrix propagation method, using

a modified version of an R matrix propagation code that has been discussed

26,27 a
elsewhere. Since F (R) is skew symmetric, the exponential sector trans-

a a an
formation matrix (26) was evaluated analytically in terms of FI2, F 3, and

F23 as discussed in subsection C above. The method for extracting a scat-

tering matrix from the global R matrix is explained elsewhere.2 We used

a variable stepsize algorithm2 6 ,27 with one stepsize parameter c for

R < 25 a0 and another (2) for R > 25 a0 .  (2) was set at a value that

yields high accuracy, and E() was decreased till convergence was obtained

for absolute squares of scattering matrix elements.
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E, F. Numerical integration in the adiabatic representation. For these

methods we applied a fixed-stepsize Runge-Kutta-Gill integration 2 8 (method E)

or a 5th order variable-stepsize predictor-corrector algorithm2 9 (method F)

to integrate eq. (38). The boundary conditions were handled the same as in

method A.

G, H. Numerical integration in the diabatic representation. Finally

we applied the Runge-Kutta-Gill (method G) and 5th order variable-stepsize

predictor-corrector (method H) methods to simultaneously integrate eqs.

(30) and (43). The boundary conditions were handled the same as in method A.

I. initial values and boundary conditions. For all the methods we

started the integration of the radial wavefunctions at small enough R that

the results are invariant to further decreasing the starting value. In par-

ticular we started the s-wave solutions at 1.1 a0 and 2.1 a0 for the 21

and 2H potential curves, respectively, for E = 0.06 Eh. For higher E we

started at smaller R, and for higher Z we started at larger R, e.g., 2.2 a0

for Z = 15 for the 2H potential curves for E = 0.06 E . At the starting

point the radial wavefunctions were taken as zero and the matrix of radial-

wavefunction derivatives was the unit matrix. This generates N linearly

independent solutions where N is the number of states retained in the wave-

function expansion. At R = 70 a0 , we transformed to the adiabatic repre-

sentation (only necessary in methods B, C, G, and H) and took linear com-

binations of the linearly independent solutions to obtain the correct

scattering solutions satisfying the Ricatti-Bessel boundary conditions

for the radial wavefunctions and their derivatives.

For methods B, C, G, and H we need also specify the initial values for

UT at the center of the first sector. It can be showln that the scattering
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matrix obtained by the above procedures is invariant to the starting value

of WT so we started it as the unit matrix. This transformation generates

an arbitrary linear combination (with R-independent coefficients) of the

physical diabatic states, where the physical ones are the ones that make

d (R) diagonal at large R. Let C T(R) denote the transformation matrix

for the physicaldiabatic states. T(R) is not needed for scattering cal-

culations but is required to make Figures 3 and 4. It is generated by

TT
C (R) = U(large R) UT(R) (49)

where large R = 70 a0 in practice and both matrices on the right side of

T(49) are generated by solving (47) with U (R + 1h) = I.
'l' start "

In all cases we checked that ending the integrations at R = 69 a0

would have given the same scattering matrices (within 0.1%) as ending at

R = 70 a0 .

J. Stabilizing transformations. For all the methods except R matrix

propagation, method D, it is necessary to integrate the radial wavefunction

through classically forbidden regions. In such regions one faces the well

known problem that components of the solution vectors grow exponentially

and can cause the solution vectors to become linearly dependent. 30- 32 This

problem is handled by performing a Schmidt orthogonalization of the solution

a ( dmatrix, X (R) or (R), after a specified number of integration steps have

been taken in regions in which at least one channel is closed. For step-

sizes small enough to insure 0.01% accuracy it was found that stabilizing

every 20 steps was sufficient so that the transition probabilities were

invariant to 6 significant figures to orthogonalizing even more often. Doublinz

the number of orthogonalizations increased the computer time by only 10".

For the larger stepsizes which give approximately 0.57 accuracy. stabilinations

were performed every step in regions in which at least one channel is closed.
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V. RESULTS AND DISCUSSION

In all cases we included three states in the coupled-channel calcu-

lations.

A. Comparison of methods. We made a detailed study of computational

efficiency for the case of the s-wave probabilities at E = 0.06 Eh . First
h*

we performed some calculations with very small stepsizes (i.e., small sector

widths) to get the accurate transition probability P12 connecting the first
(4212

(4 2) and second (42P) atomic states. Then, for the six most efficient

methods we performed calculations for a fine grid of fixed stepsizes (methods

A, B, C, E, and G) or fixed stepsize parameters E(I ) (method D) to find the

minimum computing time required to achieve 0.5% accuracy for this probability.

These computing times are given in Table I, where they are expressed as

ratios to the computing time required by method D. We see that the new

method, i.e., the variable-stepsize R matrix propagation method in the

adiabatic representation with the exponential sector transformation matrix,

is the most efficient of the seven methods tested in this work. Second

most efficient is fixed-stepsize Magnus integration in the diabatic repre-

sentation with analytic exponentiation. Analytic exponentiation was about

twice as fast as using the power series, even though the power series was

coded very efficiently to take advantage of the structure of zeroes in

the matrices. The Magnus methods could probably be made more efficient

by using a suitable variable-stepsize algorithm, but this was not attempted.

It is well known that the most efficient method for one level of accuracy

is not necessarily the most efficient method for other levels of accuracv.

A more detailed comparison of the two most efficient methods, on the same

scale as used for Table I, is given in Table II. Table II shows that the



-18-

convergence of both methods is smooth and that method D is also efficient

for higher accuracy, e.g., it is 3.7 times more efficient than method C for

0.1% accuracy in P12"

It should be clear that, although eight methods have been compared

for the same problem, there has been no attempt to determine the absolutely

fastest possible way to solve the coupled-channels problem. The main con-

clusion of ciis section is that the R matrix propagation method in the

adiabatic representation with the exponential sector transformation matrix,

which is a very convenient and stable method, is also very efficient.

B. Probabilities. The s-wave transition probabilities ror the two

sets of potential curves are shown in Figure 5. These probabilities show

regulhr oscillations as functions of l/E, and the envelope of the oscil-

lating probabilities increases with increasing energy above threshold.

The small differences between the two sets of potential curves change the

phase of the oscillations in the transition probabilities, but they do not

make large changes in the magnitudes of the envelopes. For both sets of

-5 -4 -7 -6potential curves P1 2 is in the range 10- 10 , PI3 is 10- 10 , and

P2D is 10-2- 5 - 10-2 for most energies considered.

We performed some extra calculations to check the assumption of a

complete set of states for the second-derivative coupling term. In the standard

versions of methods A, E, and F, we use equation (35) for G a . This equation

is also used to make Cd vanish in methods B, C, G, and H, and, as discussed

ii the appendix, it is required to hold for the equivalence of method D

,-' ot. her methods. Thus it is interesting to test the sensitivity of

r .- it to the treatment of the second-derivative coupling.
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The correct expression for a second-derivative coupling matrix element

is

a d a 2 AB a a

G..(R) a (a) + 2 Z Fik(R)Fka(R) (50)ij (R) dR ii h- k kj

where the sum over k should include a complete set of states. In (35),

however, the sum includes only the N states retained in the expansion (3)

of the wavefunction. To test the importance of this truncation in the

second term, we repeated the method-A calculations entirely neglecting

the second term. The results are given in Tables III and IV. In 27 out

of 28 cases, the difference of the results is 1% or less. In the remaining

case the difference is 5%. The present test is a very stringent one for

eq. (35). First of all, the second derivative coupling is known to be

less important in high-energy cases where semiclassical methods are valid,
22 ,33 ,34

but the present tests are low-energy, highly quantal cases. Second, the

truncation of the sum in the second term of (50) would be expected to be

most valid for large inelastic probabilities dominated by two strongly

coupled states. But the present inelastic probabilities are very small

and do not correspond quantitatively to a simple two-state avoided crossing.
10

Thus the fact that the second term of equation (35) has only a small effect

in the present cases is very encouraging.

It should be noted that approximations to the skew-symmetric first

term of equation (35) or (50) are dangerous. If this term is neglected,

the calculated oro.iities -c longer sum to unity or satisfy microsconic

reversibility. The second term of (35) is symmetric; thus its neglect does

not affect these properties.

C. Cross sections. Cross sections were calculated at two energies,

E = 0.06 Eh and 0.10 Eh . The first of these is only 0.022 eV above the
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42P threshold at E = 0.059192 Eh; thus it is a total energy typical of

those contributing to quenching of the 4 2p state under thermal conditions.

The second energy is 1.11 eV above the 42 P threshold. The cross sections

are given in Table IV. At 0.06 Eh, the potential curves obtained by method

21 lead to 42p-4 2S quenching cross section 1.9 times smaller than is

obtained by method 2H. However at 0.10 Eh9 the method 21 cross sections

are 1.3 times larger. Considering the small size of the cross sections

and the out-of-phase oscillations in the fixed-Z inelastic transition prob-

abilities, the different values obtained for the cross sections are not

too surprising. The much larger 42 P-5 2S cross section is less sensitive

to the difference in the potential curves.

D. Potential curves and coupling terms. Figure 1 compares the new

potential curves to the experimental ones. Method 21 leads to more accurate

dissociation energies but method 2H leads to more accurate repulsive walls.

The C-state 35 curve shows a shoulder at R = 5-6 a0. A similar feature was

predicted in reference 7. Reference 7 shows that this shoulder results

from an avoided crossing with a state with Rydberg character.

The first-derivative coupling between the X and A states peaks at

8.5 a0, and the splitting of the adiabatic energy values is a minimum at

R = 8.9 a0. The position and value of the minimum of the adiabatic splitting

is compared quantitatively to previous calculations in Table V. The table

shows, as is also clear from Figure 1, that the present calculations slightly

overestimate the X-A splitting. However the present calculations are more

accurate than all previous calculations. There are no experimental results

available for the other avoided crossings. There is still quite a bit of

uncertainty about the splitting at the A-C avoided crossing, but the two
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calculated values for the minimum splitting of the X and C curves are in

reasonably good agreement.

The shape of the present diabatic couplings as functions of R are very

similar to those calculated previously for KH (see Figure 2 of reference 7).

The adiabatic couplings also show a reasonable similarity in shape to those

calculated previously (see Figure 17 of reference 7).

E. Semiclassical approximations. Although F 2 (R) and la(R) _ (R)

show the behavior associated with an avoided crossing at R = 8-9 aO, Figure 3

shows that the diabatic potential curves do not show such a crossing. Most

previous workers have treated the X-A inelastic transition in terms of such

a hypothetical diabatic crossing, although there was already some indication

in references 3 and 7 that the usual diabatic pictures for the curve crossings

in NaH and KH might be inadequate. Nevertheless it is interesting to briefly

compare the present inelastic transition probabilities to those obtained

by the semiclassical Landau-Zener formula for estimating transition proba-

bilities at adiabatic avoided crossings resulting from diabatic crossings.

According to this formula, if the crossing occurs at R = RX . the inelastic

s-wave transition probability is
33 '36- 38

LZ =(1

P12 = 2p(l - p) (51)

where

-w (52)

2i (Hd 2 ) 2

w v d(Hd - H22 /dR (
11 22 R=R X

and v is the local radial speed at the diabatic cros&in , i.e.. for an wave.

I
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v = {2(E - Hd (R )/I} (54)
11 x

In the two-state approximation, assuming orthogonal diabatic states,

HI2(R) = [a - Ea(R (55)
12 x 2 IX

It is customary,5'6'8 for the X-A transition in alkali hydrides, to neglect

d and dH R at R = R and to approximate H22 by (in atomic units)

Hd (R) IP - (56)

22 R 2R4

where IP is the ionization potential of M, EA is the electron affinity of H,

and a is the sum of the polarizabilities of M+ and H-. Putting all these

approximations together and noting that w - I yields (in atomic units)

LZ riAE(Rx) 12
PI2 = 2exp [- 5)- 1 (57)

12 (8E/ I)1 (R 2 +2

We use ; = 1790.83 a.u. and a = 218 a.u., and we take R and ZE(RX) from

Table V.

In the more complete Landau-Zener-Stueckelberg theory, the inelastic

probability becomes
36 '38- 4

0

S LZ2p 2

P1 2 =2P sin2 (t + ) (58)

where T is the difference in action integrals for the two adiabatic curves

and 6 is a phase correction:

2 RX  
R X

T = (2rh) E EE - I- - dr'?
(ih R tpl R tp2 21

where Rtp I and Rtp 2 are the classical turning points in adiabatic states 1

and 2 respectively. Equation (58) shows that 2PLZ should be compared to the

" . ._ _
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upper envelope of the oscillating inelastic transition probability. This

comparison is shown in Table VI for those energies at which the close coupling

probabilities are maxima (compare Figure 5). The comparison, however, shows

that the Landau-Zener formula overestimates the inelastic transition prob-

abilities as compared to the results obtained from the close coupling cal-

culations. The overestimates in Table VI range from a factor of 36 to a

factor of 60. Thus this simple high-energy model does not yield accurate

transition probabilities at the low collision energies of the present study.

Although the failings of the Landau-Zener theory are well known, even

at higher energies,41 both Faist and Levine4 2 and Andresen et al. 4 3 found

that it works very well for the ionic-covalent crossing in alkali-halogen

collisions, even near threshold. In fact Andresen et al.4 3 concluded that

"a similar agreement is expected for all other systems which are dominated

by the interaction of a covalent and an ionic channel." By this argument

one would expect that it would be accurate for the ionic-covalent inter-

7
action leading to PI2 In previous work, however, it has been pointed

out that the strong interaction is not well localized in this case and that

this would lead to a breakdown of the Landau-Zener method. Furthermore,

the fact that the diabatic curves do not cross is an indication that the

transition is not an isolated curve crossing. A more quantitative measure

of whether this transition should be treated as a curve crossing will be

given below.

The other inelastic transitions are more complicated. The second and

third diabatic states cross twice, and the first and third diabatic states

do not cross. Landau-Zener-type isolated-avoided-crossing treatments are

not appropriate for either of these transitions. In the absence of simple
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models the full close coupling treatments reported above are the best way to

estimate the transition probabilities.

The additional factor in equation (58) results from the interference

of the two possible trajectories leading to the same inelastic collision.

This effect accounts for the existence of the oscillations in Figure 5.

Equation (53) results from a high-energy approximation, retaining only the

leading term in 1/v in the semiclassical phase integral. 44 With the same

approximation the difference in action integrals becomes

RX

T = (l/'v) I AE(R) dr (60)
R
tp

where the classical turning points are the same to this order. Equation (60)

predicts that at high energy the oscillations should be evenly spaced in 1/v.

At the low energies of the present study, the initial and final speeds are

appreciably different, and they differ significantly from the local radial

speeds at small r. Thus it is not possible to approximate all these speeds

by the same v and equation (60) is inapplicable. Nevertheless the regularity

in the oscillations is evident in Figure 5.

We have already mentioned that the couplings between the adiabatic curves

cannot be treated as simple avoided crossings. To put this on a more quantitative

basis we will discuss the classification of the nonadiabatic couplings. One

may distinguish two kinds of strong interaction in terms of the following

two-state representation

aI(x,R) = d (x) cos a(R) + d (x) sin U(R) (61)

a d da2(x,R) = d (x) sin (R) + d2(x) cos e(R) (62)
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Using (19), (37), (61), and (62), one finds

fa (R ) = de (63)
12'- dR

One can distinguish two prototype cases. In one case, 6 changes from 0 at

R = to 1/4 (=0.785) at small R. This occurs for a symmetric resonance

interaction like H+ + H. In another case a changes from 0 at R = to

7/2 (=1.57) at small R. This occurs for a diabatic curve crossing. In

general one may associate a Ae.. with each peak in f a(R) by integrating

over the range of strong interaction:

R 
2 a

Aeij = f f i(R) dR (64)
R
1

For actual cases, A6.. may come out somewhere between 0.785 and 1.57 for

strong interactions and may be less for weak ones. We applied this model

to the present case and the results are given in Table VII. These results

show that aG12 is not close to 1.57. Thus it is an oversimplification to

describe the 1-2 ionic-covalent interaction as a simple curve crossing,

and this helps to explain the failure of the Landau-Zener method. The

adiabats are not merely "switching" from one diabat to the other; rather

there is an appreciable "mixing" contribution. Even the 2-3 interaction,

where the diabats cross, is not a pure curve crossing. Table VII shows

that the 1-3 interaction is weak.

In order to calculate the AO.. values in Table VII, we had to separate

the overlapping contributions from two different interaction regions in
a

the vicinity of the sign change in fi .(R). We did this by the simplest

method, i.e., we integrated from the peak of f a(R) to R = and multiplied

by 2. There is an even simpler way to classify the nonadiabatic interactions

... .. -
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that also avoids the question of overlapping wings of the peaks in fa (R).
1]

Under simple assumptions in H d(R), one can show on a two-state model that
ij

f. .(R) for the symmetric resonance has the form (g/4) sech [ (R - RM)I and

for the curve cross cases it is a Lorentzian. These different shapes

may be characterized by defining the unitless interaction parameter:

a
Qij = [peak value of fii (R)] x FWM4

where FWHM is the full width at half maximum of the peak. This leads to

Qi. = 0.66 for the symmetric resonance case and Q. = 1.00 for the curve

crossing cases. We also calculated Qi. for the biggest peak in each

ijj
f. . (R), and the results are in Table VII. This confirms that the 1-2

and 2-3 interactions involve considerable mixing (as in symmetric resonance)

as opposed to pure curve crossing. This simple method for characterizing

nonadiabatic interactions should be useful for many problems.
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VI. CONCLUDING REMARKS

This paper has been concerned with calculational techniques for the

calculation of electronically inelastic transition probabilities using

ab initio potential energy curves and nonadiabatic radial-first-derivative

couplings as input. We have demonstrated that very small transition prob-

abilities can be calculated with high precision using a convenient and

accurate method based on R matrix propagation and an exponential sector

transformation matrix.

The emphasis in this article is on the techniques for solving the

coupled-channel equations to obtain the precise values of the cross sections

that correspond to a set of ab initio potential energy curves and nonadiabatic

radial-first-derivative couplings. Several other considerations enter when

we try to obtain accurate cross sections, i.e., good agreement with experi-

ment or reliable predictions. Only two of these have been considered in

this paper, namely, sensitivity to changes in the potential curves and to

the treatment of the second-derivative nonadiabatic coupling terms. Some

other factors that must be considered in future work to obtain reliable

results for the K + H system are sensitivity to change of electronic origin

in the radial-first-derivative coupling terms3 ,22'4 5 and the role of angular-

22,46derivative coupling terms.2 ' The latter terms couple the Z states to the

E ---ates, but we have included only Z-Z coupling in the present study.

Another question, also discussed elsewhere2 '3 '4 7'4 8 and also deferred to

future work for detailed numerical study, is the question of whether accurate

low-energy cross sections can be calculated from ab initio molecular-frame

input data without either including plane-wave factors or transforming at

large R to a laboratory-frame diagonal representation in which the coupling

L~
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vanishes at infinity for any consistent choice of origin for the electronic

coordinates. If such a transformation is required, the present method

can still be used to integrate out to the large-R transformation distance.
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APPENDIX

In this appendix we discuss the fact that using (18) with an incomplete

basis is equivalent to including the full effect of the first derivative

coupling matrix Fa(R), but including only part of the second derivative

a
coupling matrix G (R).

First note that U(R) defined by (30) and M(R) defined by (18) obey the

same differential equation. Note that the sign difference arises in taking

the transpose of (30) since Fa(R) is skew symmetric. It has been shown else-

where 3 that the matrices M(R) can be used to construct the transformation

U(R) from the adiabatic basis to the diabatic one. Therefore, the two

problems are equivalent in the limit of small sector size and since the

transformation method, (27)-(34), includes the full effect of the Fa (R)

matrix, so will the direct integrationscheme of eqs. (7)-(26).

By using the M matrices to generate the transformation to the diabatic
d

basis X (R), (7) can be transformed to

2

d2  dd
d X (R:i) = D(R;i) X d(R;i) (A-1)
dR- 2

where

D(R;i) = U(R) 2 (R;i) UT (R C (A-2)
1 1 C l C

and

d i ax (R;i) = U(R ) (R;i) (A-3)
C ,C 

I

In enforcing the sector matching conditions (10) and (11), the matrix T(i-li)

is now replaced by the identity matrix since F d(R) is identical zero. There-

fore, solution of (A-1)-(A-3) is the same as the solution to (31) but neglecting

G d(R). Since Gd(R) vanishes in the limit of a complete set, this neglect

is completely, justified in the converged limit. Consider, however the case
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in which an incomplete basis of the N lowest-energy adiabatic states is

included in the coupled-channel equations. Then the terms neglected in

assuming Ga. (R) obey (35) are given byij

2
.2(R) ' a L a (A-4)

AB k=N+l <a kR' k k
>

R' 1

Equation (35) will be a valid approximation for incomplete bases in the case

,,a(R) + Ga(R) j> I(R)j (A-5)

Using a Hellman-Feynman type theorem it can be shown that

a= k R)i a Hel. a
< i-, ¢ 111, <¢ , -- a e 1: a (A-6)

i 3R' a(R ) a a ( i' R Ak"

k

and therefore the conditions for the validity of (35) are

<a,;H ella 2
a(R) + Ga ( R ) j >> 1 k R (A-7)

i i + ,a a 92
1.R) 'Bk=Nl [k(R) - (l

and e a <,a el; a>
2 < <* I- -~>¢':R j

__ i SR>> "' 'P R i (A-S)
AB k=N+l[-(R)- a(F(R) ][(R) - k(R)I!

Thus equation (35) is a good approximation if the omitted states lie high

enough in energy.



TABLE I. Relative computing times required to obtain 0.5% accuracy

Method Computing time

D. R matrix propagation 1.0

C. Magnus, dlabati., analytic e::onential 2.0

B. Magnus, diabatic, exponential by power series 4

A. Magnus, adiabatic 7

G. Runge-Kutta, diabatic 16

E. Runge-Kutta, adiabatic 16

F. Adams-Moulton, adiabatic 
>30

a

H. Adams-Moulton, diabatic >40

In these two cases the results are still accurate to only 10-50% for

the computing times listed. Since these two methods were found to be
so inefficient, we did not continue to decrease the stepsize parameter

to obtain 0.5% accuracy.
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TABLE II. Detailed comparison of computational efficiencies of methods

C and D.

Number of sectors Computing b % error

or steps time a 12

Method D

302 0.85 1 .564 6 (-6 )C 0.68

358 1.01 1.5617(-6) 0.49

452 1.23 1.5564(-6) 0.37

486 1.33 1.5554(-6) 0.09

520 1.43 1.5550(-6) 0.06

621 1.68 1.5543(-6) 0.02

659 1.73 1.5541(-6) 0.01

926 2.56 1.5539(-6) -0.01

2344 6.25 1.5539(-6) -0.01

4671 11.82 1.5540(-6) 0.00

Method C

453 1.52 1.5741(-6) 1.29

647 2.02 1.5628(-6) 0.57

653 2.03 1.5615(-6) 0.48

680 2.09 1.5612(-6) 0.46

1359 3.55 1.5558(-6) 0.12

1477 4.66 1.5555(-6) 0.10

4527 11.93 1.5541(-6) 0.01

13581 35.76 1.5540(-6) 0.01

a e scale as Ia.

bFor 2H potential curves, E = 0.06 Eh, Z = 0.

cNumbers in parentheses are powers of ten.
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TABLE IV. Cross sections for excitation and de-excitation processes

in K + H collisions.

E E) £ b 2 2 c,e 2 e
h max 012 (a 0 ) 21 (a 0) e  13 0 023 (a 0)

21 potential curves

0.06 37 8.40(-6) d 2.08(-4)

0.10 165 1.20(-3) 9.80(-4) 2.75(-6) 0.41

2H potential curves

0.06 36 1.60(-5) 3.96(-4)

0.10 >145 9.24(-4) 7.55(-4) 1.73(-6) 0.4

aCross sections are accurate to about 2% with respect to variations

of integration parameters.

bNumber of partial waves necessary to converge inelastic cross sections

to 5 significant figures.

c 2 2~ji = (k idi/kJd j )oij where Ski is asymptotic momentum in channel i

and d. is the degeneracy of state i.

dNumbers in parentheses are powers of ten.

eIncludes factor of 1/3 for P-state degeneracy.
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TABLE VI. Maxima of s-wave inelastic transition probabilities

for X -A transition.

P12

E

(eV) close coupling 2PL Z

Method 21

1.91 1.6(-5) a  8.4(-4)

2.22 3.3(-5) 1.5(-3)

2.96 8.9(-5) 4.4(-3)

Method 2H

2.00 2.8(-5) 1.0(-3)

2.34 3.2(-5) 1.9(-3)

3.11 1.4(-4) 5.2(-3)

aNumbers in parentheses are powers of ten.



TABLE VII. Interaction parameters for outermost peaks in f a (R)

j location of max fa. (r) A

(a 0

1 2 8.49 0.840 0.66

2 3 14.82 0.973 0.74

1 3 7.02 0.059 0.03

1 3 11.18 0.071..
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Figure Captions

Fig. 1. Adiabatic potential energy curves as a function of internuclear

distance for the three lowest 1E+ states of KH. The curves are the

results of the ab initio pseudopotential calculations as obtained by

method 21 for the solid curve and method 2H for the dashed curve.

The two asymptotic values for the C state differ because in fitting

the 21 potential curve the experimental 5 2S excitation energy of

2.61 eV was used, whereas for the 2H potential curve the numerically

computed value of 2.55 eV was used. This difference has a negligible

effect on the scattering calculations. The potential curves for the

B state both dissociate to the correct atomic 42 P excitation energy

of 1.61 eV. The points are the experimentally determined RKR values

for the X and A potential curves (from references 7 and 10).

Fig. 2. First derivative coupling terms, as defined by equations (19) and

(37), for the three lowest adiabatic iZ+ states of KH as functions

of internuclear distance. States 1, 2, and 3 correspond to the X,

A, and C states of figure 1. (Since the difference between methods

21 and 2H involves only the treatment of the core, the derivative

couplings are the same for both methods.)

Fig. 3. The diagonal matrix elements Hk(R) for the iE+ states of KH in

the P-diabatic basis as functions of internuclear distance. The solid

and dashed curves are the results of transforming the corresponding

solid and dashed adiabatic curves shown in figure 1.

Fig. 4. Same as figure 3 except for the off-diagonal elements H k(R).

iki
Fig. 5. Transition probabilities P .k (E) as functions of the reciprocal

of the total energy for =0. The zero of energy is the asymptote



of the X state. The top plot is for excitation of K from the 42 S

to the 42 P state, the lower left plot is for excitation of K from

the 4 2S to the 5 2S state, and the lower right part is for excitation
2o

of K from the 42 P to the 52S state. In the top plot the left and

right arrows along the abscissa indicate the energetic thresholds

for excitation to the 5 2S and 42 P state, respectively. The arrows

in the lowest two plots are the threshold for the excitation to the

5 2S state. Note that the energy scale for the upper and lc-er left

plots coincide and are aligned vertically with each other, wheruas

the energy scale for the lower right plot is expanded. In each plot

the solid and dashed curves are the probabilities computed using

the adiabatic potential curves and nonadiabatic couplings obtained

by methods 21 and 2H, respectively.
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